<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <head> <!-- fix buggy IE8, especially for mathjax --> <meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7"> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <title>An angle trisection</title> <link rel="stylesheet" type="text/css" media="screen" href="style.css"> <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML,http://userpages.umbc.edu/~rostamia/mathjax-config.js"> MathJax.Hub.Queue( function() {document.body.style.visibility="visible"} ); </script> </head> <body style="visibility:hidden"> <h1>An angle trisection</h1> <h4> Free Jamison, <i>Trisection Approximation</i>, American Mathematical Monthly, vol. 61, no. 5, May 1954, pp. 334–336. </h4> <table class="centered"> <tr><td align="center"> <applet code="Geometry" archive="Geometry.zip" width="700" height="400"> <param name="background" value="ffffff"> <param name="title" value="An angle trisection"> <param name="e[1]" value="O;point;fixed;200,200"> <param name="e[2]" value="A;point;fixed;200,350"> <param name="e[3]" value="C1;circle;radius;O,A;none;none;lightGray;none"> <param name="e[4]" value="B;point;circleSlider;C1,280,0;red"> <param name="e[5]" value="OA;line;connect;O,A;none;none;blue"> <param name="e[6]" value="OB;line;connect;O,B;none;none;blue"> <!-- the points F, D, C --> <param name="e[7]" value="x1;point;angleBisector;A,O,B;none;none"> <param name="e[8]" value="x2;point;angleBisector;x1,O,B;none;none"> <param name="e[9]" value="x3;point;angleBisector;x1,O,x2;none;none"> <param name="e[10]" value="F;point;cutoff;O,x2,O,A"> <param name="e[11]" value="D;point;cutoff;O,x3,O,A"> <param name="e[12]" value="C;point;extend;F,O,F,O"> <!-- the lines FC, CE, OE --> <param name="e[13]" value="FC;line;connect;F,C;none;none;lightGray"> <param name="e[14]" value="CD;line;connect;C,D;none;none;green"> <param name="e[15]" value="E;point;extend;C,D,C,F"> <param name="e[16]" value="DE;line;connect;D,E;none;none;green"> <param name="e[17]" value="OE;line;connect;O,E;none;none;red"> <param name="e[18]" value="p1;point;fixed;225,200;none;none"> <param name="e[19]" value="c1;circle;radius;O,p1;none;none;none;none"> <param name="e[20]" value="l1;line;chord;OA,c1;none;none;none"> <param name="e[21]" value="q1;point;first;l1;none;none"> <param name="e[22]" value="l2;line;chord;OE,c1;none;none;none"> <param name="e[23]" value="q2;point;first;l2;none;none"> <param name="e[24]" value="s1;sector;sector;O,q1,q2;none;none;black;yellow"> <param name="e[25]" value="p2;point;fixed;225,200;none;none"> <param name="e[26]" value="c2;circle;radius;O,p2;none;none;none;none"> <param name="e[27]" value="l3;line;chord;OE,c2;none;none;none"> <param name="e[28]" value="q3;point;first;l3;none;none"> <param name="e[29]" value="l4;line;chord;OB,c2;none;none;none"> <param name="e[30]" value="q4;point;first;l4;none;none"> <param name="e[31]" value="s2;sector;sector;O,q3,q4;none;none;black;orange"> <!-- needed for the error analysis, not the construction --> <param name="e[32]" value="OD;line;connect;O,D;none;none;lightGray"> </applet> </td></tr> <tr><td> <b> Drag the point $B$ to change the angle $AOB$ (but stay on the right half of the circle).<br> Press “r” to reset the diagram to its initial state.<br> The red line $OE$ is an approximate trisector of the angle $AOB$. </b> </td></tr></table> <h2>The construction</h2> <p> This construction, due to Free Jamison (see the reference at the top of this page) is a more accurate variant of the construction described in <a href="trisect-jamison.html">a simpler construction</a>. <p> Consider the circular arc $AB$ centered at $O$, shown in the diagram above. Assume the angle $AOB$ is between 0 and 180 degrees. To trisect $AOB$, do: <ol> <li> Pick the points $F$ and $D$ on the arc $BA$ such that arc $BF$ = 2/8 of the arc $BA$ and arc $BD$ = 3/8 of the arc $BA$. <li> Extend $FO$ to intersect the circle at a point $C$. <li> Draw the line $CD$ and extend it to a point $E$ such that $DE$ equals the circle's diameter. </ol> <p> The line $OE$ is an approximate trisector of the angle $AOB$. <h2>Error Analysis</h2> <p> <p> Let $\alpha$ and $\beta$ be the sizes of the angles $AOB$ and $EOB$, respectively. The angle $FOD$ equals $\alpha/8$ by the construction, therefore the angle $FCD$, which is half the central angle $FOD$, is equal to $\alpha/16$. The triangle $DOC$ is isosceles, therefore the angle $ODC$ also equals $\alpha/16$. <p> In the triangle $OED$, let $x$ and $y$ be the sizes of the angles $OED$ and $EOD$, respectively. Since the sum $x+y$ of the triangle's internal angles equals the triangle's external angle $ODC$, we have $x+y = \alpha/16$. Let us note, however, that the angle $y$ equals $DOB$ minus $EOB$. Thus $y = 3\alpha/8 - \beta$, whence $x = \beta - 5\alpha/16$. <p> In the triangle $OED$, the side $DE$ is twice the side $OD$ by the construction, therefore the law of sines gives $\sin y = 2 \sin x$. Consequently, $\sin(3\alpha/8 - \beta) = 2 \sin(\beta - 5\alpha/16)$. Solving this for $\beta$ we arrive at: \[ \beta = \frac{5}{16} \alpha + \arctan \frac{\sin(a/16)}{2+\cos(a/16)} = \frac{1}{3} \alpha - \frac{1}{2^{12}\cdot3^4} \alpha^3 + O(\alpha^5) = \frac{1}{3} \alpha - \frac{1}{331776} \alpha^3 + O(\alpha^5). \] <p> We see that the trisection error $e(\alpha) = \alpha/3 - \beta$ is given by: \[ e(\alpha) = \frac{1}{48}\alpha - \arctan \frac{\sin(a/16)}{2+\cos(a/16)}. \] (This formula is also given in Jamison's article.) The function $e(a)$ is monotonically increasing in $\alpha$. The worst error on the interval $0 \le \alpha \le \pi/2$ is $e(\pi/2)$ = 0.0000117 radians = 0.00067 degrees. The worst error on the interval $0 \le \alpha \le \pi$ is $e(\pi)$ = 0.000093756 radians = 0.00537 degrees. Quite impressive! <hr width="60%"> <p> <em>This applet was created by <a href="http://userpages.umbc.edu/~rostamia">Rouben Rostamian</a> using <a href="http://aleph0.clarku.edu/~djoyce/home.html">David Joyce</a>'s <a href="http://aleph0.clarkU.edu/~djoyce/java/Geometry/Geometry.html">Geometry Applet</a> on July 22, 2002. <br>Cosmetic revisions on June 7, 2010. </em> <p> <table width="100%"> <tr> <td valign="top">Go to <a href="index.html#trisections">list of trisections</a></td> <td align="right" style="width:200px;"> <a href="http://validator.w3.org/check?uri=referer"> <img src="/~rostamia/images/valid-html401.png" class="noborder" width="88" height="31" alt="Valid HTML"></a> <a href="http://jigsaw.w3.org/css-validator/check/referer"> <img src="/~rostamia/images/valid-css.png" class="noborder" width="88" height="31" alt="Valid CSS"></a> </td></tr> </table> </body> </html>