<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <head> <!-- fix buggy IE8, especially for mathjax --> <meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7"> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <title>An angle trisection</title> <link rel="stylesheet" type="text/css" media="screen" href="style.css"> <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML,http://userpages.umbc.edu/~rostamia/mathjax-config.js"> MathJax.Hub.Queue( function() {document.body.style.visibility="visible"} ); </script> </head> <body style="visibility:hidden"> <h1>An angle trisection</h1> <h4>Construction by <a href="mailto:wayne.baker@ed.cna.nl.ca">Wayne Baker</a></h4> <table class="centered"> <tr><td align="center"> <applet code="Geometry" archive="Geometry.zip" width="570" height="360"> <param name="background" value="ffffff"> <param name="title" value="An angle trisection"> <!-- the angle AOB --> <param name="e[1]" value="O;point;fixed;260,310"> <param name="e[2]" value="A;point;fixed;520,310"> <param name="e[3]" value="OA;line;connect;O,A;none;none;blue"> <param name="e[4]" value="C;circle;radius;O,A;none;none;none;none"> <param name="e[5]" value="B;point;circleSlider;C,20,0;red;red"> <param name="e[6]" value="OB;line;connect;O,B;none;none;blue"> <param name="e[7]" value="z1;sector;sector;O,A,B;none;none;blue;none"> <!-- point P quadrisects the arc AB --> <param name="e[8]" value="t1;point;angleBisector;A,O,B;none;none"> <param name="e[9]" value="t2;point;angleBisector;A,O,t1;none;none"> <param name="e[10]" value="Ot2;line;chord;O,t2,C;none;black;none"> <param name="e[11]" value="P;point;first;Ot2"> <param name="e[12]" value="AP;line;connect;A,P;none;none;green"> <!-- the arc A'OB' --> <param name="e[13]" value="A';point;fixed;455,310"> <param name="e[14]" value="C';circle;radius;O,A';none;none;none;none"> <param name="e[15]" value="t9;line;chord;O,B,C';none;none;none"> <param name="e[16]" value="B';point;first;t9"> <param name="e[17]" value="z2;sector;sector;O,A',B';none;none;orange;none"> <!-- P' --> <param name="e[18]" value="t3;circle;radius;A',A,P;none;none;none;none"> <param name="e[19]" value="t4;line;bichord;t3,C';none;none;none"> <param name="e[20]" value="P';point;first;t4"> <param name="e[21]" value="s1;line;chord;O,P',C;none;none;none"> <param name="e[22]" value="s2;point;first;s1;none;none"> <param name="e[23]" value="s3;line;connect;O,s2;none;none;red"> <param name="e[24]" value="A'P';line;connect;A',P';none;none;green"> <!-- angle marker --> <param name="e[25]" value="p1;point;fixed;290,310;none;none"> <param name="e[26]" value="c1;circle;radius;O,p1;none;none;none;none"> <param name="e[27]" value="l1;line;chord;OA,c1;none;none;none"> <param name="e[28]" value="q1;point;first;l1;none;none"> <param name="e[29]" value="l2;line;chord;s3,c1;none;none;none"> <param name="e[30]" value="q2;point;first;l2;none;none"> <param name="e[31]" value="S1;sector;sector;O,q1,q2;none;none;black;orange"> <param name="e[32]" value="l3;line;chord;OB,c1;none;none;none"> <param name="e[33]" value="q3;point;first;l3;none;none"> <param name="e[34]" value="S2;sector;sector;O,q2,q3;none;none;black;yellow"> </applet> </td></tr> <tr><td> <b> Drag the point $B$ to change the angle $AOB$.<br> Press “r” to reset the diagram to its initial state.<br> The red line is an approximate trisector of the angle $AOB$. </b> </td></tr></table> <H2>The Basic Construction</H2> <p> Here is a very simple straightedge and compass construction of an approximate angle trisector due to <a href="mailto:wayne.baker@ed.cna.nl.ca">Wayne Baker</a>. <p> Let us represent the angle by the circular arc $AB$ centered at $O$; see the diagram above. The angle's size may be anything from 0 to 180 degrees. To trisect, do: <ol> <li> Quadrisect the angle $AOB$, that is, divide it into four equal parts. The arc $AP$ in the diagram above represents one quarter of the original arc $AB$. Let $L$ be the length of the chord $AP$ (shown in green). <li> Draw a circular arc (shown in orange) centered at $O$ and radius 3/4 of $OA$. Mark $A'$ and $B'$ its intersections with the rays $OA$ and $OB$, respectively. <li> Swing an arc (not shown) of radius $L$ centered at $A'$ and mark $P'$ its intersection with the arc $A'B'$, as shown. </ol> <p> The line $OP'$ is an approximate trisector of the angle $AOB$. <h2>Error Analysis</h2> <p> Let $\alpha$ and $\beta=\tau(\alpha)$ be the sizes of the angles $AOB$ and $A'OP'$, respectively. It is straightforward to show that \[ \beta = 2 \arcsin\big(\frac{4}{3}\sin\frac{\alpha}{8}\big) = \frac{\alpha}{3} + \frac{7}{2^7\cdot3^4}\alpha^3 + O(\alpha^5) = \frac{\alpha}{3} + \frac{7}{10368}\alpha^3 + O(\alpha^5). \] <!-- The first two terms of the series are the same as those in trisect-dunham.html. The third terms are different. b_baker := 2*arcsin(4/3*sin(a/8)); series(b_baker,a); b_durham := a/2 - arctan(sin(a/4 - arcsin(sin(a/4)/2))*4/3); series(b_durham, a); --> <p> The error $ \ds e(\alpha) = \tau(\alpha) - \frac{\alpha}{3} $ is monotonically increasing in $\alpha$. The worst error on the interval $0 \le \alpha \le \pi/2$ is $e(\pi/2)$ = 0.002695 radians = 0.154 degrees. The worst error on the interval $0 \le \alpha \le \pi$ is $e(\pi)$ = 0.0237 radians = 1.360 degrees. <h2>Iterative Improvement</h2> <p> As we see in the asymptotic expansion shown above, the angle $\tau(\alpha)$ is slightly larger than the target value of $\alpha/3$. Making three copies of the constructed angle, and putting them end-to-end as in arcs $A'P'$, $P'P''$, and $P''P'''$ shown in the diagram below, we arrive at the endpoint $P'''$ which is very slightly off the point $B'$, and just outside the arc $A'B'$. The constructible angle $B'OP'''$ is exactly three times the error $e(\alpha)$. If we were able to trisect $B'OP'''$ exactly, then we would know the error, and consequently will have achieved the exact trisection of the original angle. Of course the exact trisection of $B'OP'''$ is impossible in general, but we may repeat the method outlined in the <em>Basic Construction</em> above to obtain an <em>approximate</em> trisection of $B'OP'''$, which will yield $ \tau\big(3\tau(\alpha) - \alpha\big) $, and consequently an improved trisection $\tau_{\mathrm{improved}}(\alpha)$ of the original angle: \[ \tau_{\mathrm{improved}}(\alpha) = \tau(\alpha) - \tau\big(3\tau(\alpha) - \alpha\big) = \frac{\alpha}{3} - \frac{7^4}{2^{28}\cdot3^{13}} \alpha^9 + O(\alpha^{11}). \] The error $ \ds e_{\mathrm{improved}}(\alpha) = \frac{\alpha}{3} - \tau_{\mathrm{improved}}(\alpha)$ is monotonically increasing in $\alpha$. In particular, $e_{\mathrm{improved}}(\pi/2) = 1.5\times 10^{-9}$ radians $ = 8.6\times10^{-8}$ degrees. <table class="centered"> <tr><td align="center"> <applet code="Geometry" archive="Geometry.zip" width="570" height="360"> <param name=background value="ffffff"> <param name=title value="An angle trisection"> <!-- the angle AOB --> <param name="e[1]" value="O;point;fixed;260,310"> <param name="e[2]" value="A;point;fixed;520,310"> <param name="e[3]" value="OA;line;connect;O,A"> <param name="e[4]" value="C;circle;radius;O,A;none;none;none;none"> <param name="e[5]" value="B;point;circleSlider;C,50,0"> <param name="e[6]" value="OB;line;connect;O,B"> <param name="e[7]" value="z1;sector;sector;O,A,B;none;none;blue;none"> <!-- point P quadrisects the arc AB --> <param name="e[8]" value="t1;point;angleBisector;A,O,B;none;none"> <param name="e[9]" value="t2;point;angleBisector;A,O,t1;none;none"> <param name="e[10]" value="Ot2;line;chord;O,t2,C;none;black;none"> <param name="e[11]" value="P;point;first;Ot2"> <param name="e[12]" value="OP;line;connect;O,P;none;none;none"> <!-- the arc A'OB' --> <param name="e[13]" value="A';point;fixed;455,310"> <param name="e[14]" value="C';circle;radius;O,A';none;none;none;none"> <param name="e[15]" value="t9;line;chord;O,B,C';none;none;none"> <param name="e[16]" value="B';point;first;t9"> <param name="e[17]" value="z2;sector;sector;O,A',B';none;none;orange;none"> <!-- P' --> <param name="e[18]" value="t3;circle;radius;A',A,P;none;none;none;none"> <param name="e[19]" value="t4;line;bichord;t3,C';none;none;none"> <param name="e[20]" value="P';point;first;t4"> <param name="e[21]" value="s1;line;chord;O,P',C;none;none;none"> <param name="e[22]" value="s2;point;first;s1;none;none"> <param name="e[23]" value="s3;line;connect;O,s2;none;none;red"> <!-- P'' --> <param name="e[24]" value="t5;circle;radius;P',A,P;none;none;none;none"> <param name="e[25]" value="t6;line;bichord;t5,C';none;none;none"> <param name="e[26]" value="P'';point;first;t6"> <!-- P''' Note the trailing spaces after P'''. These become a part of the label! --> <param name="e[27]" value="t7;circle;radius;P'',A,P;none;none;none;none"> <param name="e[28]" value="t8;line;bichord;t7,C';none;none;none"> <param name="e[29]" value="P''' ;point;first;t8"> <param name="e[30]" value="OP''';line;connect;O,P''' ;none;none;black"> <param name="e[31]" value="u1;sector;sector;O,B',P''' ;none;none;none;magenta"> </applet> </td></tr> <tr><td> <b> Drag the point $B$ to change the angle $AOB$.<br> Press “r” to reset the diagram to its initial state.<br> The red line is an approximate trisector of the angle $AOB$.<br> The arcs $P'P''$ and $P''P'''$ are copies of $A'P'$. The endpoint $P'''$ is just slightly off the point $B'$.<br> The (very small and nearly indiscernible) angle $B'OP'''$ is three times the trisection error. </b> </td></tr></table> <hr width="60%"> <p> <em>This applet was created by <a href="http://userpages.umbc.edu/~rostamia">Rouben Rostamian</a> using <a href="http://aleph0.clarku.edu/~djoyce/home.html">David Joyce</a>'s <a href="http://aleph0.clarkU.edu/~djoyce/java/Geometry/Geometry.html">Geometry Applet</a> on May 31, 2010. </em> <p> <table width="100%"> <tr> <td valign="top">Go to <a href="index.html#trisections">list of trisections</a></td> <td align="right" style="width:200px;"> <a href="http://validator.w3.org/check?uri=referer"> <img src="/~rostamia/images/valid-html401.png" class="noborder" width="88" height="31" alt="Valid HTML"></a> <a href="http://jigsaw.w3.org/css-validator/check/referer"> <img src="/~rostamia/images/valid-css.png" class="noborder" width="88" height="31" alt="Valid CSS"></a> </td></tr> </table> </body> </html>