dyna3/app-proto/examples/three-spheres.rs
Vectornaut 360ce12d8b feat: Curvature regulators (#80)
Prior to this commit, there's only one kind of regulator: the one that regulates the inversive distance between two spheres (or, more generally, the Lorentz product between two element representation vectors). Adds a new kind of regulator, which regulates the curvature of a sphere (issue #55). In the process, introduces a general framework based on new traits for organizing and sharing code between different kinds of regulators.

Co-authored-by: Aaron Fenyes <aaron.fenyes@fareycircles.ooo>
Reviewed-on: StudioInfinity/dyna3#80
Co-authored-by: Vectornaut <vectornaut@nobody@nowhere.net>
Co-committed-by: Vectornaut <vectornaut@nobody@nowhere.net>
2025-04-21 23:40:42 +00:00

33 lines
No EOL
1.2 KiB
Rust

use dyna3::engine::{Q, realize_gram, sphere, ConstraintProblem};
fn main() {
let mut problem = ConstraintProblem::from_guess({
let a: f64 = 0.75_f64.sqrt();
&[
sphere(1.0, 0.0, 0.0, 1.0),
sphere(-0.5, a, 0.0, 1.0),
sphere(-0.5, -a, 0.0, 1.0)
]
});
for j in 0..3 {
for k in j..3 {
problem.gram.push_sym(j, k, if j == k { 1.0 } else { -1.0 });
}
}
println!();
let (config, _, success, history) = realize_gram(
&problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
if success {
println!("Target accuracy achieved!");
} else {
println!("Failed to reach target accuracy");
}
println!("Steps: {}", history.scaled_loss.len() - 1);
println!("Loss: {}", history.scaled_loss.last().unwrap());
println!("\nStep │ Loss\n─────┼────────────────────────────────");
for (step, scaled_loss) in history.scaled_loss.into_iter().enumerate() {
println!("{:<4}{}", step, scaled_loss);
}
}