forked from glen/dyna3
415 lines
No EOL
14 KiB
Rust
415 lines
No EOL
14 KiB
Rust
use lazy_static::lazy_static;
|
|
use nalgebra::{Const, DMatrix, DVector, Dyn};
|
|
use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */
|
|
|
|
// --- elements ---
|
|
|
|
pub fn point(x: f64, y: f64, z: f64) -> DVector<f64> {
|
|
DVector::from_column_slice(&[x, y, z, 0.5, 0.5*(x*x + y*y + z*z)])
|
|
}
|
|
|
|
// the sphere with the given center and radius, with inward-pointing normals
|
|
pub fn sphere(center_x: f64, center_y: f64, center_z: f64, radius: f64) -> DVector<f64> {
|
|
let center_norm_sq = center_x * center_x + center_y * center_y + center_z * center_z;
|
|
DVector::from_column_slice(&[
|
|
center_x / radius,
|
|
center_y / radius,
|
|
center_z / radius,
|
|
0.5 / radius,
|
|
0.5 * (center_norm_sq / radius - radius)
|
|
])
|
|
}
|
|
|
|
// the sphere of curvature `curv` whose closest point to the origin has position
|
|
// `off * dir` and normal `dir`, where `dir` is a unit vector. setting the
|
|
// curvature to zero gives a plane
|
|
pub fn sphere_with_offset(dir_x: f64, dir_y: f64, dir_z: f64, off: f64, curv: f64) -> DVector<f64> {
|
|
let norm_sp = 1.0 + off * curv;
|
|
DVector::from_column_slice(&[
|
|
norm_sp * dir_x,
|
|
norm_sp * dir_y,
|
|
norm_sp * dir_z,
|
|
0.5 * curv,
|
|
off * (1.0 + 0.5 * off * curv)
|
|
])
|
|
}
|
|
|
|
// --- partial matrices ---
|
|
|
|
struct MatrixEntry {
|
|
index: (usize, usize),
|
|
value: f64
|
|
}
|
|
|
|
pub struct PartialMatrix(Vec<MatrixEntry>);
|
|
|
|
impl PartialMatrix {
|
|
pub fn new() -> PartialMatrix {
|
|
PartialMatrix(Vec::<MatrixEntry>::new())
|
|
}
|
|
|
|
pub fn push_sym(&mut self, row: usize, col: usize, value: f64) {
|
|
let PartialMatrix(entries) = self;
|
|
entries.push(MatrixEntry { index: (row, col), value: value });
|
|
if row != col {
|
|
entries.push(MatrixEntry { index: (col, row), value: value });
|
|
}
|
|
}
|
|
|
|
/* DEBUG */
|
|
pub fn log_to_console(&self) {
|
|
let PartialMatrix(entries) = self;
|
|
for ent in entries {
|
|
let ent_str = format!(" {} {} {}", ent.index.0, ent.index.1, ent.value);
|
|
console::log_1(&JsValue::from(ent_str.as_str()));
|
|
}
|
|
}
|
|
|
|
fn proj(&self, a: &DMatrix<f64>) -> DMatrix<f64> {
|
|
let mut result = DMatrix::<f64>::zeros(a.nrows(), a.ncols());
|
|
let PartialMatrix(entries) = self;
|
|
for ent in entries {
|
|
result[ent.index] = a[ent.index];
|
|
}
|
|
result
|
|
}
|
|
|
|
fn sub_proj(&self, rhs: &DMatrix<f64>) -> DMatrix<f64> {
|
|
let mut result = DMatrix::<f64>::zeros(rhs.nrows(), rhs.ncols());
|
|
let PartialMatrix(entries) = self;
|
|
for ent in entries {
|
|
result[ent.index] = ent.value - rhs[ent.index];
|
|
}
|
|
result
|
|
}
|
|
}
|
|
|
|
// --- descent history ---
|
|
|
|
pub struct DescentHistory {
|
|
pub config: Vec<DMatrix<f64>>,
|
|
pub scaled_loss: Vec<f64>,
|
|
pub neg_grad: Vec<DMatrix<f64>>,
|
|
pub min_eigval: Vec<f64>,
|
|
pub base_step: Vec<DMatrix<f64>>,
|
|
pub backoff_steps: Vec<i32>
|
|
}
|
|
|
|
impl DescentHistory {
|
|
fn new() -> DescentHistory {
|
|
DescentHistory {
|
|
config: Vec::<DMatrix<f64>>::new(),
|
|
scaled_loss: Vec::<f64>::new(),
|
|
neg_grad: Vec::<DMatrix<f64>>::new(),
|
|
min_eigval: Vec::<f64>::new(),
|
|
base_step: Vec::<DMatrix<f64>>::new(),
|
|
backoff_steps: Vec::<i32>::new(),
|
|
}
|
|
}
|
|
}
|
|
|
|
// --- gram matrix realization ---
|
|
|
|
// the Lorentz form
|
|
lazy_static! {
|
|
pub static ref Q: DMatrix<f64> = DMatrix::from_row_slice(5, 5, &[
|
|
1.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 1.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 1.0, 0.0, 0.0,
|
|
0.0, 0.0, 0.0, 0.0, -2.0,
|
|
0.0, 0.0, 0.0, -2.0, 0.0
|
|
]);
|
|
}
|
|
|
|
struct SearchState {
|
|
config: DMatrix<f64>,
|
|
err_proj: DMatrix<f64>,
|
|
loss: f64
|
|
}
|
|
|
|
impl SearchState {
|
|
fn from_config(gram: &PartialMatrix, config: DMatrix<f64>) -> SearchState {
|
|
let err_proj = gram.sub_proj(&(config.tr_mul(&*Q) * &config));
|
|
let loss = err_proj.norm_squared();
|
|
SearchState {
|
|
config: config,
|
|
err_proj: err_proj,
|
|
loss: loss
|
|
}
|
|
}
|
|
}
|
|
|
|
fn basis_matrix(index: (usize, usize), nrows: usize, ncols: usize) -> DMatrix<f64> {
|
|
let mut result = DMatrix::<f64>::zeros(nrows, ncols);
|
|
result[index] = 1.0;
|
|
result
|
|
}
|
|
|
|
// use backtracking line search to find a better configuration
|
|
fn seek_better_config(
|
|
gram: &PartialMatrix,
|
|
state: &SearchState,
|
|
base_step: &DMatrix<f64>,
|
|
base_target_improvement: f64,
|
|
min_efficiency: f64,
|
|
backoff: f64,
|
|
max_backoff_steps: i32
|
|
) -> Option<(SearchState, i32)> {
|
|
let mut rate = 1.0;
|
|
for backoff_steps in 0..max_backoff_steps {
|
|
let trial_config = &state.config + rate * base_step;
|
|
let trial_state = SearchState::from_config(gram, trial_config);
|
|
let improvement = state.loss - trial_state.loss;
|
|
if improvement >= min_efficiency * rate * base_target_improvement {
|
|
return Some((trial_state, backoff_steps));
|
|
}
|
|
rate *= backoff;
|
|
}
|
|
None
|
|
}
|
|
|
|
// seek a matrix `config` for which `config' * Q * config` matches the partial
|
|
// matrix `gram`. use gradient descent starting from `guess`
|
|
pub fn realize_gram(
|
|
gram: &PartialMatrix,
|
|
guess: DMatrix<f64>,
|
|
frozen: &[(usize, usize)],
|
|
scaled_tol: f64,
|
|
min_efficiency: f64,
|
|
backoff: f64,
|
|
reg_scale: f64,
|
|
max_descent_steps: i32,
|
|
max_backoff_steps: i32
|
|
) -> (DMatrix<f64>, bool, DescentHistory) {
|
|
// start the descent history
|
|
let mut history = DescentHistory::new();
|
|
|
|
// find the dimension of the search space
|
|
let element_dim = guess.nrows();
|
|
let assembly_dim = guess.ncols();
|
|
let total_dim = element_dim * assembly_dim;
|
|
|
|
// scale the tolerance
|
|
let scale_adjustment = (gram.0.len() as f64).sqrt();
|
|
let tol = scale_adjustment * scaled_tol;
|
|
|
|
// convert the frozen indices to stacked format
|
|
let frozen_stacked: Vec<usize> = frozen.into_iter().map(
|
|
|index| index.1*element_dim + index.0
|
|
).collect();
|
|
|
|
// use Newton's method with backtracking and gradient descent backup
|
|
let mut state = SearchState::from_config(gram, guess);
|
|
for _ in 0..max_descent_steps {
|
|
// stop if the loss is tolerably low
|
|
history.config.push(state.config.clone());
|
|
history.scaled_loss.push(state.loss / scale_adjustment);
|
|
if state.loss < tol { break; }
|
|
|
|
// find the negative gradient of the loss function
|
|
let neg_grad = 4.0 * &*Q * &state.config * &state.err_proj;
|
|
let mut neg_grad_stacked = neg_grad.clone().reshape_generic(Dyn(total_dim), Const::<1>);
|
|
history.neg_grad.push(neg_grad.clone());
|
|
|
|
// find the negative Hessian of the loss function
|
|
let mut hess_cols = Vec::<DVector<f64>>::with_capacity(total_dim);
|
|
for col in 0..assembly_dim {
|
|
for row in 0..element_dim {
|
|
let index = (row, col);
|
|
let basis_mat = basis_matrix(index, element_dim, assembly_dim);
|
|
let neg_d_err =
|
|
basis_mat.tr_mul(&*Q) * &state.config
|
|
+ state.config.tr_mul(&*Q) * &basis_mat;
|
|
let neg_d_err_proj = gram.proj(&neg_d_err);
|
|
let deriv_grad = 4.0 * &*Q * (
|
|
-&basis_mat * &state.err_proj
|
|
+ &state.config * &neg_d_err_proj
|
|
);
|
|
hess_cols.push(deriv_grad.reshape_generic(Dyn(total_dim), Const::<1>));
|
|
}
|
|
}
|
|
let mut hess = DMatrix::from_columns(hess_cols.as_slice());
|
|
|
|
// regularize the Hessian
|
|
let min_eigval = hess.symmetric_eigenvalues().min();
|
|
if min_eigval <= 0.0 {
|
|
hess -= reg_scale * min_eigval * DMatrix::identity(total_dim, total_dim);
|
|
}
|
|
history.min_eigval.push(min_eigval);
|
|
|
|
// project the negative gradient and negative Hessian onto the
|
|
// orthogonal complement of the frozen subspace
|
|
let zero_col = DVector::zeros(total_dim);
|
|
let zero_row = zero_col.transpose();
|
|
for &k in &frozen_stacked {
|
|
neg_grad_stacked[k] = 0.0;
|
|
hess.set_row(k, &zero_row);
|
|
hess.set_column(k, &zero_col);
|
|
hess[(k, k)] = 1.0;
|
|
}
|
|
|
|
// compute the Newton step
|
|
/*
|
|
we need to either handle or eliminate the case where the minimum
|
|
eigenvalue of the Hessian is zero, so the regularized Hessian is
|
|
singular. right now, this causes the Cholesky decomposition to return
|
|
`None`, leading to a panic when we unrap
|
|
*/
|
|
let base_step_stacked = hess.cholesky().unwrap().solve(&neg_grad_stacked);
|
|
let base_step = base_step_stacked.reshape_generic(Dyn(element_dim), Dyn(assembly_dim));
|
|
history.base_step.push(base_step.clone());
|
|
|
|
// use backtracking line search to find a better configuration
|
|
match seek_better_config(
|
|
gram, &state, &base_step, neg_grad.dot(&base_step),
|
|
min_efficiency, backoff, max_backoff_steps
|
|
) {
|
|
Some((better_state, backoff_steps)) => {
|
|
state = better_state;
|
|
history.backoff_steps.push(backoff_steps);
|
|
},
|
|
None => return (state.config, false, history)
|
|
};
|
|
}
|
|
(state.config, state.loss < tol, history)
|
|
}
|
|
|
|
// --- tests ---
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use std::{array, f64::consts::PI};
|
|
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn sub_proj_test() {
|
|
let target = PartialMatrix(vec![
|
|
MatrixEntry { index: (0, 0), value: 19.0 },
|
|
MatrixEntry { index: (0, 2), value: 39.0 },
|
|
MatrixEntry { index: (1, 1), value: 59.0 },
|
|
MatrixEntry { index: (1, 2), value: 69.0 }
|
|
]);
|
|
let attempt = DMatrix::<f64>::from_row_slice(2, 3, &[
|
|
1.0, 2.0, 3.0,
|
|
4.0, 5.0, 6.0
|
|
]);
|
|
let expected_result = DMatrix::<f64>::from_row_slice(2, 3, &[
|
|
18.0, 0.0, 36.0,
|
|
0.0, 54.0, 63.0
|
|
]);
|
|
assert_eq!(target.sub_proj(&attempt), expected_result);
|
|
}
|
|
|
|
#[test]
|
|
fn zero_loss_test() {
|
|
let gram = PartialMatrix({
|
|
let mut entries = Vec::<MatrixEntry>::new();
|
|
for j in 0..3 {
|
|
for k in 0..3 {
|
|
entries.push(MatrixEntry {
|
|
index: (j, k),
|
|
value: if j == k { 1.0 } else { -1.0 }
|
|
});
|
|
}
|
|
}
|
|
entries
|
|
});
|
|
let config = {
|
|
let a: f64 = 0.75_f64.sqrt();
|
|
DMatrix::from_columns(&[
|
|
sphere(1.0, 0.0, 0.0, a),
|
|
sphere(-0.5, a, 0.0, a),
|
|
sphere(-0.5, -a, 0.0, a)
|
|
])
|
|
};
|
|
let state = SearchState::from_config(&gram, config);
|
|
assert!(state.loss.abs() < f64::EPSILON);
|
|
}
|
|
|
|
// this problem is from a sangaku by Irisawa Shintarō Hiroatsu. the article
|
|
// below includes a nice translation of the problem statement, which was
|
|
// recorded in Uchida Itsumi's book _Kokon sankan_ (_Mathematics, Past and
|
|
// Present_)
|
|
//
|
|
// "Japan's 'Wasan' Mathematical Tradition", by Abe Haruki
|
|
// https://www.nippon.com/en/japan-topics/c12801/
|
|
//
|
|
#[test]
|
|
fn irisawa_hexlet_test() {
|
|
let gram = PartialMatrix({
|
|
let mut entries = Vec::<MatrixEntry>::new();
|
|
for s in 0..9 {
|
|
// each sphere is represented by a spacelike vector
|
|
entries.push(MatrixEntry { index: (s, s), value: 1.0 });
|
|
|
|
// the circumscribing sphere is tangent to all of the other
|
|
// spheres, with matching orientation
|
|
if s > 0 {
|
|
entries.push(MatrixEntry { index: (0, s), value: 1.0 });
|
|
entries.push(MatrixEntry { index: (s, 0), value: 1.0 });
|
|
}
|
|
|
|
if s > 2 {
|
|
// each chain sphere is tangent to the "sun" and "moon"
|
|
// spheres, with opposing orientation
|
|
for n in 1..3 {
|
|
entries.push(MatrixEntry { index: (s, n), value: -1.0 });
|
|
entries.push(MatrixEntry { index: (n, s), value: -1.0 });
|
|
}
|
|
|
|
// each chain sphere is tangent to the next chain sphere,
|
|
// with opposing orientation
|
|
let s_next = 3 + (s-2) % 6;
|
|
entries.push(MatrixEntry { index: (s, s_next), value: -1.0 });
|
|
entries.push(MatrixEntry { index: (s_next, s), value: -1.0 });
|
|
}
|
|
}
|
|
entries
|
|
});
|
|
let guess = DMatrix::from_columns(
|
|
[
|
|
sphere(0.0, 0.0, 0.0, 15.0),
|
|
sphere(0.0, 0.0, -9.0, 5.0),
|
|
sphere(0.0, 0.0, 11.0, 3.0)
|
|
].into_iter().chain(
|
|
(1..=6).map(
|
|
|k| {
|
|
let ang = (k as f64) * PI/3.0;
|
|
sphere(9.0 * ang.cos(), 9.0 * ang.sin(), 0.0, 2.5)
|
|
}
|
|
)
|
|
).collect::<Vec<_>>().as_slice()
|
|
);
|
|
let frozen: [(usize, usize); 4] = array::from_fn(|k| (3, k));
|
|
const SCALED_TOL: f64 = 1.0e-12;
|
|
let (config, success, history) = realize_gram(
|
|
&gram, guess, &frozen,
|
|
SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
|
|
);
|
|
let entry_tol = SCALED_TOL.sqrt();
|
|
let solution_diams = [30.0, 10.0, 6.0, 5.0, 15.0, 10.0, 3.75, 2.5, 2.0 + 8.0/11.0];
|
|
for (k, diam) in solution_diams.into_iter().enumerate() {
|
|
assert!((config[(3, k)] - 1.0 / diam).abs() < entry_tol);
|
|
}
|
|
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
|
|
if success {
|
|
println!("Target accuracy achieved!");
|
|
} else {
|
|
println!("Failed to reach target accuracy");
|
|
}
|
|
println!("Steps: {}", history.scaled_loss.len() - 1);
|
|
println!("Loss: {}", history.scaled_loss.last().unwrap());
|
|
if success {
|
|
println!("\nChain diameters:");
|
|
println!(" {} sun (given)", 1.0 / config[(3, 3)]);
|
|
for k in 4..9 {
|
|
println!(" {} sun", 1.0 / config[(3, k)]);
|
|
}
|
|
}
|
|
println!("\nStep │ Loss\n─────┼────────────────────────────────");
|
|
for (step, scaled_loss) in history.scaled_loss.into_iter().enumerate() {
|
|
println!("{:<4} │ {}", step, scaled_loss);
|
|
}
|
|
}
|
|
} |