use itertools::izip; use std::{f64::consts::FRAC_1_SQRT_2, rc::Rc}; use nalgebra::Vector3; use sycamore::prelude::*; use web_sys::{console, wasm_bindgen::JsValue}; use crate::{ AppState, engine, engine::DescentHistory, assembly::{ Assembly, Element, ElementColor, InversiveDistanceRegulator, Point, Sphere }, specified::SpecifiedValue }; /* DEBUG */ // load an example assembly for testing. this code will be removed once we've // built a more formal test assembly system fn load_gen_assemb(assembly: &Assembly) { let _ = assembly.try_insert_element( Sphere::new( String::from("gemini_a"), String::from("Castor"), [1.00_f32, 0.25_f32, 0.00_f32], engine::sphere(0.5, 0.5, 0.0, 1.0) ) ); let _ = assembly.try_insert_element( Sphere::new( String::from("gemini_b"), String::from("Pollux"), [0.00_f32, 0.25_f32, 1.00_f32], engine::sphere(-0.5, -0.5, 0.0, 1.0) ) ); let _ = assembly.try_insert_element( Sphere::new( String::from("ursa_major"), String::from("Ursa major"), [0.25_f32, 0.00_f32, 1.00_f32], engine::sphere(-0.5, 0.5, 0.0, 0.75) ) ); let _ = assembly.try_insert_element( Sphere::new( String::from("ursa_minor"), String::from("Ursa minor"), [0.25_f32, 1.00_f32, 0.00_f32], engine::sphere(0.5, -0.5, 0.0, 0.5) ) ); let _ = assembly.try_insert_element( Sphere::new( String::from("moon_deimos"), String::from("Deimos"), [0.75_f32, 0.75_f32, 0.00_f32], engine::sphere(0.0, 0.15, 1.0, 0.25) ) ); let _ = assembly.try_insert_element( Sphere::new( String::from("moon_phobos"), String::from("Phobos"), [0.00_f32, 0.75_f32, 0.50_f32], engine::sphere(0.0, -0.15, -1.0, 0.25) ) ); } /* DEBUG */ // load an example assembly for testing. this code will be removed once we've // built a more formal test assembly system fn load_low_curv_assemb(assembly: &Assembly) { // create the spheres let a = 0.75_f64.sqrt(); let _ = assembly.try_insert_element( Sphere::new( "central".to_string(), "Central".to_string(), [0.75_f32, 0.75_f32, 0.75_f32], engine::sphere(0.0, 0.0, 0.0, 1.0) ) ); let _ = assembly.try_insert_element( Sphere::new( "assemb_plane".to_string(), "Assembly plane".to_string(), [0.75_f32, 0.75_f32, 0.75_f32], engine::sphere_with_offset(0.0, 0.0, 1.0, 0.0, 0.0) ) ); let _ = assembly.try_insert_element( Sphere::new( "side1".to_string(), "Side 1".to_string(), [1.00_f32, 0.00_f32, 0.25_f32], engine::sphere_with_offset(1.0, 0.0, 0.0, 1.0, 0.0) ) ); let _ = assembly.try_insert_element( Sphere::new( "side2".to_string(), "Side 2".to_string(), [0.25_f32, 1.00_f32, 0.00_f32], engine::sphere_with_offset(-0.5, a, 0.0, 1.0, 0.0) ) ); let _ = assembly.try_insert_element( Sphere::new( "side3".to_string(), "Side 3".to_string(), [0.00_f32, 0.25_f32, 1.00_f32], engine::sphere_with_offset(-0.5, -a, 0.0, 1.0, 0.0) ) ); let _ = assembly.try_insert_element( Sphere::new( "corner1".to_string(), "Corner 1".to_string(), [0.75_f32, 0.75_f32, 0.75_f32], engine::sphere(-4.0/3.0, 0.0, 0.0, 1.0/3.0) ) ); let _ = assembly.try_insert_element( Sphere::new( "corner2".to_string(), "Corner 2".to_string(), [0.75_f32, 0.75_f32, 0.75_f32], engine::sphere(2.0/3.0, -4.0/3.0 * a, 0.0, 1.0/3.0) ) ); let _ = assembly.try_insert_element( Sphere::new( String::from("corner3"), String::from("Corner 3"), [0.75_f32, 0.75_f32, 0.75_f32], engine::sphere(2.0/3.0, 4.0/3.0 * a, 0.0, 1.0/3.0) ) ); // impose the desired tangencies and make the sides planar let index_range = 1..=3; let [central, assemb_plane] = ["central", "assemb_plane"].map( |id| assembly.elements_by_id.with_untracked( |elts_by_id| elts_by_id[id].clone() ) ); let sides = index_range.clone().map( |k| assembly.elements_by_id.with_untracked( |elts_by_id| elts_by_id[&format!("side{k}")].clone() ) ); let corners = index_range.map( |k| assembly.elements_by_id.with_untracked( |elts_by_id| elts_by_id[&format!("corner{k}")].clone() ) ); for plane in [assemb_plane.clone()].into_iter().chain(sides.clone()) { // fix the curvature of each plane let curvature = plane.regulators().with_untracked( |regs| regs.first().unwrap().clone() ); curvature.set_point().set(SpecifiedValue::try_from("0".to_string()).unwrap()); } let all_perpendicular = [central.clone()].into_iter() .chain(sides.clone()) .chain(corners.clone()); for sphere in all_perpendicular { // make each side and packed sphere perpendicular to the assembly plane let right_angle = InversiveDistanceRegulator::new([sphere, assemb_plane.clone()]); right_angle.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap()); assembly.insert_regulator(Rc::new(right_angle)); } for sphere in sides.clone().chain(corners.clone()) { // make each side and corner sphere tangent to the central sphere let tangency = InversiveDistanceRegulator::new([sphere.clone(), central.clone()]); tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap()); assembly.insert_regulator(Rc::new(tangency)); } for (side_index, side) in sides.enumerate() { // make each side tangent to the two adjacent corner spheres for (corner_index, corner) in corners.clone().enumerate() { if side_index != corner_index { let tangency = InversiveDistanceRegulator::new([side.clone(), corner]); tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap()); assembly.insert_regulator(Rc::new(tangency)); } } } } fn load_pointed_assemb(assembly: &Assembly) { let _ = assembly.try_insert_element( Point::new( format!("point_front"), format!("Front point"), [0.75_f32, 0.75_f32, 0.75_f32], engine::point(0.0, 0.0, FRAC_1_SQRT_2) ) ); let _ = assembly.try_insert_element( Point::new( format!("point_back"), format!("Back point"), [0.75_f32, 0.75_f32, 0.75_f32], engine::point(0.0, 0.0, -FRAC_1_SQRT_2) ) ); for index_x in 0..=1 { for index_y in 0..=1 { let x = index_x as f64 - 0.5; let y = index_y as f64 - 0.5; let _ = assembly.try_insert_element( Sphere::new( format!("sphere{index_x}{index_y}"), format!("Sphere {index_x}{index_y}"), [0.5*(1.0 + x) as f32, 0.5*(1.0 + y) as f32, 0.5*(1.0 - x*y) as f32], engine::sphere(x, y, 0.0, 1.0) ) ); let _ = assembly.try_insert_element( Point::new( format!("point{index_x}{index_y}"), format!("Point {index_x}{index_y}"), [0.5*(1.0 + x) as f32, 0.5*(1.0 + y) as f32, 0.5*(1.0 - x*y) as f32], engine::point(x, y, 0.0) ) ); } } } // setting the inversive distances between the vertices to -2 gives a regular // tetrahedron with side length 1, whose insphere and circumsphere have radii // sqrt(1/6) and sqrt(3/2), respectively. to measure those radii, set an // inversive distance of -1 between the insphere and each face, and then set an // inversive distance of 0 between the circumsphere and each vertex fn load_radius_ratio_assemb(assembly: &Assembly) { let index_range = 1..=4; // create the spheres const GRAY: ElementColor = [0.75_f32, 0.75_f32, 0.75_f32]; let spheres = [ Sphere::new( "sphere_faces".to_string(), "Insphere".to_string(), GRAY, engine::sphere(0.0, 0.0, 0.0, 0.5) ), Sphere::new( "sphere_vertices".to_string(), "Circumsphere".to_string(), GRAY, engine::sphere(0.0, 0.0, 0.0, 0.25) ) ]; for sphere in spheres { let _ = assembly.try_insert_element(sphere); } // create the vertices let vertices = izip!( index_range.clone(), [ [1.00_f32, 0.50_f32, 0.75_f32], [1.00_f32, 0.75_f32, 0.50_f32], [1.00_f32, 1.00_f32, 0.50_f32], [0.75_f32, 0.50_f32, 1.00_f32] ].into_iter(), [ engine::point(-0.6, -0.8, -0.6), engine::point(-0.6, 0.8, 0.6), engine::point(0.6, -0.8, 0.6), engine::point(0.6, 0.8, -0.6) ].into_iter() ).map( |(k, color, representation)| { Point::new( format!("v{k}"), format!("Vertex {k}"), color, representation ) } ); for vertex in vertices { let _ = assembly.try_insert_element(vertex); } // create the faces let base_dir = Vector3::new(1.0, 0.75, 1.0).normalize(); let offset = base_dir.dot(&Vector3::new(-0.6, 0.8, 0.6)); let faces = izip!( index_range.clone(), [ [1.00_f32, 0.00_f32, 0.25_f32], [1.00_f32, 0.25_f32, 0.00_f32], [0.75_f32, 0.75_f32, 0.00_f32], [0.25_f32, 0.00_f32, 1.00_f32] ].into_iter(), [ engine::sphere_with_offset(base_dir[0], base_dir[1], base_dir[2], offset, 0.0), engine::sphere_with_offset(base_dir[0], -base_dir[1], -base_dir[2], offset, 0.0), engine::sphere_with_offset(-base_dir[0], base_dir[1], -base_dir[2], offset, 0.0), engine::sphere_with_offset(-base_dir[0], -base_dir[1], base_dir[2], offset, 0.0) ].into_iter() ).map( |(k, color, representation)| { Sphere::new( format!("f{k}"), format!("Face {k}"), color, representation ) } ); for face in faces { face.ghost().set(true); let _ = assembly.try_insert_element(face); } // impose the constraints for j in index_range.clone() { let [face_j, vertex_j] = [ format!("f{j}"), format!("v{j}") ].map( |id| assembly.elements_by_id.with_untracked( |elts_by_id| elts_by_id[&id].clone() ) ); // make the faces planar let curvature_regulator = face_j.regulators().with_untracked( |regs| regs.first().unwrap().clone() ); curvature_regulator.set_point().set( SpecifiedValue::try_from("0".to_string()).unwrap() ); for k in index_range.clone().filter(|&index| index != j) { let vertex_k = assembly.elements_by_id.with_untracked( |elts_by_id| elts_by_id[&format!("v{k}")].clone() ); // fix the distances between the vertices if j < k { let distance_regulator = InversiveDistanceRegulator::new( [vertex_j.clone(), vertex_k.clone()] ); assembly.insert_regulator(Rc::new(distance_regulator)); } // put the vertices on the faces let incidence_regulator = InversiveDistanceRegulator::new([face_j.clone(), vertex_k.clone()]); incidence_regulator.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap()); assembly.insert_regulator(Rc::new(incidence_regulator)); } } } #[component] pub fn AddRemove() -> View { /* DEBUG */ let assembly_name = create_signal("general".to_string()); create_effect(move || { // get name of chosen assembly let name = assembly_name.get_clone(); console::log_1( &JsValue::from(format!("Showing assembly \"{}\"", name.clone())) ); batch(|| { let state = use_context::(); let assembly = &state.assembly; // pause realization assembly.keep_realized.set(false); // clear state assembly.regulators.update(|regs| regs.clear()); assembly.elements.update(|elts| elts.clear()); assembly.elements_by_id.update(|elts_by_id| elts_by_id.clear()); assembly.descent_history.set(DescentHistory::new()); state.selection.update(|sel| sel.clear()); // load assembly match name.as_str() { "general" => load_gen_assemb(assembly), "low-curv" => load_low_curv_assemb(assembly), "pointed" => load_pointed_assemb(assembly), "radius-ratio" => load_radius_ratio_assemb(assembly), _ => () }; // resume realization assembly.keep_realized.set(true); }); }); view! { div(id="add-remove") { button( on:click=|_| { let state = use_context::(); state.assembly.insert_element_default::(); } ) { "Add sphere" } button( on:click=|_| { let state = use_context::(); state.assembly.insert_element_default::(); } ) { "Add point" } button( class="emoji", /* KLUDGE */ // for convenience, we're using an emoji as a temporary icon for this button disabled={ let state = use_context::(); state.selection.with(|sel| sel.len() != 2) }, on:click=|_| { let state = use_context::(); let subjects: [_; 2] = state.selection.with( // the button is only enabled when two elements are // selected, so we know the cast to a two-element array // will succeed |sel| sel .clone() .into_iter() .collect::>() .try_into() .unwrap() ); state.assembly.insert_regulator( Rc::new(InversiveDistanceRegulator::new(subjects)) ); state.selection.update(|sel| sel.clear()); } ) { "🔗" } select(bind:value=assembly_name) { /* DEBUG */ // example assembly chooser option(value="general") { "General" } option(value="low-curv") { "Low-curvature" } option(value="pointed") { "Pointed" } option(value="radius-ratio") { "Radius ratio" } option(value="empty") { "Empty" } } } } }