Compare commits

..

23 commits

Author SHA1 Message Date
Aaron Fenyes
7d6a394156 Name element column index more descriptively 2024-11-14 01:18:20 -08:00
Aaron Fenyes
a48fef3641 Comment example assembly chooser
Also, add a way to load the empty assembly.
2024-11-14 00:55:33 -08:00
Aaron Fenyes
2b083be998 Explain emoji icon kludge 2024-11-14 00:16:32 -08:00
Aaron Fenyes
0c8022d78e Give CSS colors meaningful names 2024-11-14 00:07:02 -08:00
Aaron Fenyes
3f3c1739cb Write out "element" in HTML element classes
Write out "representation" too.
2024-11-13 16:40:39 -08:00
Aaron Fenyes
882286c0e3 Write out "constraint" in HTML element classes 2024-11-13 16:36:03 -08:00
Aaron Fenyes
b3470b597d Make Element::index private 2024-11-12 23:51:37 -08:00
Aaron Fenyes
102f400553 Switch font to Fira Sans
It has tabular numbers, and it's nice and big too.
2024-11-12 23:33:25 -08:00
Aaron Fenyes
d223df869c Stop Assembly::realize from reacting to itself
Previously, `realize` both tracked and updated the element vectors, so
calling it in a reactive context could start a feedback loop.
2024-11-12 23:33:25 -08:00
Aaron Fenyes
b94280c456 Test representation validity in realization effect 2024-11-12 23:33:25 -08:00
Aaron Fenyes
92b91df435 Use tabular numbers for element vectors 2024-11-12 23:33:25 -08:00
Aaron Fenyes
33dd5dbe82 Make element vectors reactive 2024-11-12 23:33:25 -08:00
Aaron Fenyes
037a0c376f Add an element constructor 2024-11-12 23:33:25 -08:00
Aaron Fenyes
ec1911b889 Simplify memos 2024-11-12 23:33:25 -08:00
Aaron Fenyes
ce9b114dd6 Render constraint lists dynamically 2024-11-12 23:33:25 -08:00
Aaron Fenyes
cc126fc527 Correct typo in comment 2024-11-12 23:33:25 -08:00
Aaron Fenyes
70978c640b Include vector representation in element diff key 2024-11-12 23:33:25 -08:00
Aaron Fenyes
db0a8c2da8 Round element vectors to three decimal places 2024-11-12 23:33:25 -08:00
Aaron Fenyes
4ecb39e73a Specify fonts
This should help the interface look more consistent across platforms.
The font choices are just placeholders: consistency is the main goal.
2024-11-12 23:33:25 -08:00
Aaron Fenyes
7361f1a721 Flag constraints with invalid input 2024-11-12 23:33:25 -08:00
Aaron Fenyes
f2f73b31cf Update title and authors 2024-11-12 23:33:25 -08:00
Aaron Fenyes
dcf5764993 Factor out element outline item 2024-11-12 23:33:25 -08:00
Aaron Fenyes
d526ac9f1f Factor out constraint outline item 2024-11-12 23:33:25 -08:00
40 changed files with 1460 additions and 6443 deletions

View file

@ -1,22 +0,0 @@
# set up the Trunk web build system
#
# https://trunkrs.dev
#
# the `curl` call is based on David Tolnay's `rust-toolchain` action
#
# https://github.com/dtolnay/rust-toolchain
#
runs:
using: "composite"
steps:
- run: rustup target add wasm32-unknown-unknown
# install the Trunk binary to `ci-bin` within the workspace directory, which
# is determined by the `github.workspace` label and reflected in the
# `GITHUB_WORKSPACE` environment variable. then, make the `trunk` command
# available by placing the fully qualified path to `ci-bin` on the
# workflow's search path
- run: mkdir -p ci-bin
- run: curl --output - --proto '=https' --tlsv1.2 --retry 10 --retry-connrefused --location --silent --show-error --fail 'https://github.com/trunk-rs/trunk/releases/download/v0.21.12/trunk-x86_64-unknown-linux-gnu.tar.gz' | tar --gunzip --extract --file -
working-directory: ci-bin
- run: echo "${{ github.workspace }}/ci-bin" >> $GITHUB_PATH

View file

@ -1,29 +0,0 @@
on:
pull_request:
push:
branches: [main]
jobs:
# run the automated tests, reporting success if the tests pass and were built
# without warnings. the examples are run as tests, because we've configured
# each example target with `test = true` and `harness = false` in Cargo.toml.
# Trunk build failures caused by problems outside the Rust source code, like
# missing assets, should be caught by `trunk_build_test`
test:
runs-on: docker
container:
image: cimg/rust:1.86-node
defaults:
run:
# set the default working directory for each `run` step, relative to the
# workspace directory. this default only affects `run` steps (and if we
# tried to set the `working-directory` label for any other kind of step,
# it wouldn't be recognized anyway)
working-directory: app-proto
steps:
# Check out the repository so that its top-level directory is the
# workspace directory (action variable `github.workspace`, environment
# variable `$GITHUB_WORKSPACE`):
- uses: https://code.forgejo.org/actions/checkout@v4
- uses: ./.forgejo/setup-trunk
- run: RUSTFLAGS='-D warnings' cargo test

8
.gitignore vendored
View file

@ -1,2 +1,8 @@
ci-bin node_modules
site
docbuild
__tests__
coverage
dyna3.zip
tmpproj
*~ *~

View file

@ -12,78 +12,8 @@ Note that currently this is just the barest beginnings of the project, more of a
### Implementation goals ### Implementation goals
* Provide a comfortable, intuitive UI * Comfortable, intuitive UI
* Allow execution in browser (so implemented in WASM-compatible language) * Able to run in browser (so implemented in WASM-compatible language)
* Produce scalable graphics of 3D diagrams, and maybe STL files (or other fabricatable file format) as well * Produce scalable graphics of 3D diagrams, and maybe STL files (or other fabricatable file format) as well.
## Prototype
The latest prototype is in the folder `app-proto`. It includes both a user interface and a numerical constraint-solving engine.
### Install the prerequisites
1. Install [`rustup`](https://rust-lang.github.io/rustup/): the officially recommended Rust toolchain manager.
- It's available on Ubuntu as a [Snap](https://snapcraft.io/rustup).
2. Call `rustup default stable` to "download the latest stable release of Rust and set it as your default toolchain".
- If you forget, the `rustup` [help system](https://github.com/rust-lang/rustup/blob/d9b3601c3feb2e88cf3f8ca4f7ab4fdad71441fd/src/errors.rs#L109-L112) will remind you.
3. Call `rustup target add wasm32-unknown-unknown` to add the [most generic 32-bit WebAssembly target](https://doc.rust-lang.org/nightly/rustc/platform-support/wasm32-unknown-unknown.html).
4. Call `cargo install wasm-pack` to install the [WebAssembly toolchain](https://rustwasm.github.io/docs/wasm-pack/).
5. Call `cargo install trunk` to install the [Trunk](https://trunkrs.dev/) web-build tool.
- In the future, `trunk` can be updated with the same command. (You may need the `--locked` flag if your ambient version of `rustc` does not match that required by `trunk`.)
6. Add the `.cargo/bin` folder in your home directory to your executable search path
- This lets you call Trunk, and other tools installed by Cargo, without specifying their paths.
- On POSIX systems, the search path is stored in the `PATH` environment variable.
- Alternatively, if you don't want to adjust your `PATH`, you can install `trunk` in another directory `DIR` via `cargo install --root DIR trunk`.
### Play with the prototype
1. From the `app-proto` folder, call `trunk serve --release` to build and serve the prototype.
- The crates the prototype depends on will be downloaded and served automatically.
- For a faster build, at the expense of a much slower prototype, you can call `trunk serve` without the `--release` flag.
- If you want to stay in the top-level folder, you can call `trunk serve --config app-proto [--release]` from there instead.
3. In a web browser, visit one of the URLs listed under the message `INFO 📡 server listening at:`.
- Touching any file in the `app-proto` folder will make Trunk rebuild and live-reload the prototype.
4. Press *ctrl+C* in the shell where Trunk is running to stop serving the prototype.
### Run the engine on some example problems
1. Use `sh` to run the script `tools/run-examples.sh`.
- The script is location-independent, so you can do this from anywhere in the dyna3 repository.
- The call from the top level of the repository is:
```bash
sh tools/run-examples.sh
```
- For each example problem, the engine will print the value of the loss function at each optimization step.
- The first example that prints is the same as the Irisawa hexlet example from the Julia version of the engine prototype. If you go into `engine-proto/gram-test`, launch Julia, and then execute
```julia
include("irisawa-hexlet.jl")
for (step, scaled_loss) in enumerate(history_alt.scaled_loss)
println(rpad(step-1, 4), " | ", scaled_loss)
end
```
you should see that it prints basically the same loss history until the last few steps, when the lower default precision of the Rust engine really starts to show.
### Run the automated tests
1. Go into the `app-proto` folder.
2. Call `cargo test`.
### Deploy the prototype
1. From the `app-proto` folder, call `trunk build --release`.
- Building in [release mode](https://doc.rust-lang.org/cargo/reference/profiles.html#release) produces an executable which is smaller and often much faster, but harder to debug and more time-consuming to build.
- If you want to stay in the top-level folder, you can call `trunk build --config app-proto --release` from there instead.
2. Use `sh` to run the packaging script `tools/package-for-deployment.sh`.
- The script is location-independent, so you can do this from anywhere in the dyna3 repository.
- The call from the top level of the repository is:
```bash
sh tools/package-for-deployment.sh
```
- This will overwrite or replace the files in `deploy/dyna3`.
3. Put the contents of `deploy/dyna3` in the folder on your server that the prototype will be served from.
- To simplify uploading, you might want to combine these files into an archive called `deploy/dyna3.zip`. Git has been set to ignore this path.

1346
app-proto/Cargo.lock generated

File diff suppressed because it is too large Load diff

View file

@ -3,23 +3,18 @@ name = "dyna3"
version = "0.1.0" version = "0.1.0"
authors = ["Aaron Fenyes", "Glen Whitney"] authors = ["Aaron Fenyes", "Glen Whitney"]
edition = "2021" edition = "2021"
rust-version = "1.86"
[features] [features]
default = ["console_error_panic_hook"] default = ["console_error_panic_hook"]
dev = []
[dependencies] [dependencies]
enum-iterator = "2.3.0"
itertools = "0.13.0" itertools = "0.13.0"
js-sys = "0.3.70" js-sys = "0.3.70"
lazy_static = "1.5.0" lazy_static = "1.5.0"
nalgebra = "0.33.0" nalgebra = "0.33.0"
readonly = "0.2.12" rustc-hash = "2.0.0"
sycamore = "0.9.1" slab = "0.4.9"
sycamore = "0.9.0-beta.3"
# We use Charming to help display engine diagnostics
charming = { version = "0.5.1", features = ["wasm"] }
# The `console_error_panic_hook` crate provides better debugging of panics by # The `console_error_panic_hook` crate provides better debugging of panics by
# logging them with `console.error`. This is great for development, but requires # logging them with `console.error`. This is great for development, but requires
@ -30,7 +25,6 @@ console_error_panic_hook = { version = "0.1.7", optional = true }
[dependencies.web-sys] [dependencies.web-sys]
version = "0.3.69" version = "0.3.69"
features = [ features = [
'DomRect',
'HtmlCanvasElement', 'HtmlCanvasElement',
'HtmlInputElement', 'HtmlInputElement',
'Performance', 'Performance',
@ -42,41 +36,9 @@ features = [
'WebGlVertexArrayObject' 'WebGlVertexArrayObject'
] ]
# the self-dependency specifies features to use for tests and examples
#
# https://github.com/rust-lang/cargo/issues/2911#issuecomment-1483256987
#
[dev-dependencies] [dev-dependencies]
dyna3 = { path = ".", default-features = false, features = ["dev"] }
wasm-bindgen-test = "0.3.34" wasm-bindgen-test = "0.3.34"
# turn off spurious warnings about the custom config that Sycamore uses
#
# https://sycamore.dev/book/troubleshooting#unexpected-cfg-condition-name--sycamore-force-ssr
#
[lints.rust]
unexpected_cfgs = { level = "warn", check-cfg = ["cfg(sycamore_force_ssr)"] }
[profile.release] [profile.release]
opt-level = "s" # optimize for small code size opt-level = "s" # optimize for small code size
debug = true # include debug symbols debug = true # include debug symbols
[[example]]
name = "irisawa-hexlet"
test = true
harness = false
[[example]]
name = "kaleidocycle"
test = true
harness = false
[[example]]
name = "point-on-sphere"
test = true
harness = false
[[example]]
name = "three-spheres"
test = true
harness = false

View file

@ -1,2 +0,0 @@
[build]
public_url = "./"

View file

@ -1,36 +0,0 @@
#![allow(dead_code)]
use nalgebra::DMatrix;
use dyna3::engine::{Q, DescentHistory, Realization};
pub fn title(title: &str) {
println!("─── {title} ───");
}
pub fn realization_diagnostics(realization: &Realization) {
let Realization { result, history } = realization;
println!();
if let Err(ref message) = result {
println!("❌️ {message}");
} else {
println!("✅️ Target accuracy achieved!");
}
println!("Steps: {}", history.scaled_loss.len() - 1);
println!("Loss: {}", history.scaled_loss.last().unwrap());
}
pub fn gram_matrix(config: &DMatrix<f64>) {
println!("\nCompleted Gram matrix:{}", (config.tr_mul(&*Q) * config).to_string().trim_end());
}
pub fn config(config: &DMatrix<f64>) {
println!("\nConfiguration:{}", config.to_string().trim_end());
}
pub fn loss_history(history: &DescentHistory) {
println!("\nStep │ Loss\n─────┼────────────────────────────────");
for (step, scaled_loss) in history.scaled_loss.iter().enumerate() {
println!("{:<4}{}", step, scaled_loss);
}
}

View file

@ -1,23 +0,0 @@
#[path = "common/print.rs"]
mod print;
use dyna3::engine::{ConfigNeighborhood, examples::realize_irisawa_hexlet};
fn main() {
const SCALED_TOL: f64 = 1.0e-12;
let realization = realize_irisawa_hexlet(SCALED_TOL);
print::title("Irisawa hexlet");
print::realization_diagnostics(&realization);
if let Ok(ConfigNeighborhood { config, .. }) = realization.result {
// print the diameters of the chain spheres
println!("\nChain diameters:");
println!(" {} sun (given)", 1.0 / config[(3, 3)]);
for k in 4..9 {
println!(" {} sun", 1.0 / config[(3, k)]);
}
// print the completed Gram matrix
print::gram_matrix(&config);
}
print::loss_history(&realization.history);
}

View file

@ -1,32 +0,0 @@
#[path = "common/print.rs"]
mod print;
use nalgebra::{DMatrix, DVector};
use dyna3::engine::{ConfigNeighborhood, examples::realize_kaleidocycle};
fn main() {
const SCALED_TOL: f64 = 1.0e-12;
let realization = realize_kaleidocycle(SCALED_TOL);
print::title("Kaleidocycle");
print::realization_diagnostics(&realization);
if let Ok(ConfigNeighborhood { config, nbhd: tangent }) = realization.result {
// print the completed Gram matrix and the realized configuration
print::gram_matrix(&config);
print::config(&config);
// find the kaleidocycle's twist motion by projecting onto the tangent
// space
const N_POINTS: usize = 12;
let up = DVector::from_column_slice(&[0.0, 0.0, 1.0, 0.0]);
let down = -&up;
let twist_motion: DMatrix<_> = (0..N_POINTS).step_by(4).flat_map(
|n| [
tangent.proj(&up.as_view(), n),
tangent.proj(&down.as_view(), n+1),
]
).sum();
let normalization = 5.0 / twist_motion[(2, 0)];
println!("\nTwist motion:{}", (normalization * twist_motion).to_string().trim_end());
}
}

View file

@ -1,33 +0,0 @@
#[path = "common/print.rs"]
mod print;
use dyna3::engine::{
point,
realize_gram,
sphere,
ConfigNeighborhood,
ConstraintProblem,
};
fn main() {
let mut problem = ConstraintProblem::from_guess(&[
point(0.0, 0.0, 2.0),
sphere(0.0, 0.0, 0.0, 1.0)
]);
for j in 0..2 {
for k in j..2 {
problem.gram.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 });
}
}
problem.frozen.push(3, 0, problem.guess[(3, 0)]);
let realization = realize_gram(
&problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
print::title("Point on a sphere");
print::realization_diagnostics(&realization);
if let Ok(ConfigNeighborhood { config, .. }) = realization.result {
print::gram_matrix(&config);
print::config(&config);
}
print::loss_history(&realization.history);
}

View file

@ -1,34 +0,0 @@
#[path = "common/print.rs"]
mod print;
use dyna3::engine::{
realize_gram,
sphere,
ConfigNeighborhood,
ConstraintProblem,
};
fn main() {
let mut problem = ConstraintProblem::from_guess({
let a: f64 = 0.75_f64.sqrt();
&[
sphere(1.0, 0.0, 0.0, 1.0),
sphere(-0.5, a, 0.0, 1.0),
sphere(-0.5, -a, 0.0, 1.0),
]
});
for j in 0..3 {
for k in j..3 {
problem.gram.push_sym(j, k, if j == k { 1.0 } else { -1.0 });
}
}
let realization = realize_gram(
&problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
print::title("Three spheres");
print::realization_diagnostics(&realization);
if let Ok(ConfigNeighborhood { config, .. }) = realization.result {
print::gram_matrix(&config);
}
print::loss_history(&realization.history);
}

View file

@ -6,12 +6,6 @@
<link data-trunk rel="css" href="main.css"/> <link data-trunk rel="css" href="main.css"/>
<link href="https://fonts.bunny.net/css?family=fira-sans:ital,wght@0,400;1,400&display=swap" rel="stylesheet"> <link href="https://fonts.bunny.net/css?family=fira-sans:ital,wght@0,400;1,400&display=swap" rel="stylesheet">
<link href="https://fonts.bunny.net/css?family=noto-emoji:wght@400&text=%f0%9f%94%97%e2%9a%a0&display=swap" rel="stylesheet"> <link href="https://fonts.bunny.net/css?family=noto-emoji:wght@400&text=%f0%9f%94%97%e2%9a%a0&display=swap" rel="stylesheet">
<!--
the Charming visualization crate, which we use to show engine diagnostics,
depends the ECharts JavaScript package
-->
<script src="https://cdn.jsdelivr.net/npm/echarts@5.5.1/dist/echarts.min.js"></script>
</head> </head>
<body></body> <body></body>
</html> </html>

View file

@ -3,8 +3,7 @@
--text-bright: white; --text-bright: white;
--text-invalid: #f58fc2; /* bright pink */ --text-invalid: #f58fc2; /* bright pink */
--border: #555; /* light gray */ --border: #555; /* light gray */
--border-focus-dark: #aaa; /* bright gray */ --border-focus: #aaa; /* bright gray */
--border-focus-light: white;
--border-invalid: #70495c; /* dusky pink */ --border-invalid: #70495c; /* dusky pink */
--selection-highlight: #444; /* medium gray */ --selection-highlight: #444; /* medium gray */
--page-background: #222; /* dark gray */ --page-background: #222; /* dark gray */
@ -18,24 +17,13 @@ body {
font-family: 'Fira Sans', sans-serif; font-family: 'Fira Sans', sans-serif;
} }
.invalid {
color: var(--text-invalid);
}
.status {
width: 20px;
text-align: center;
font-family: 'Noto Emoji';
font-style: normal;
}
/* sidebar */ /* sidebar */
#sidebar { #sidebar {
display: flex; display: flex;
flex-direction: column; flex-direction: column;
float: left; float: left;
width: 500px; width: 450px;
height: 100vh; height: 100vh;
margin: 0px; margin: 0px;
padding: 0px; padding: 0px;
@ -53,7 +41,9 @@ body {
} }
#add-remove > button { #add-remove > button {
width: 32px;
height: 32px; height: 32px;
font-size: large;
} }
/* KLUDGE */ /* KLUDGE */
@ -62,9 +52,7 @@ body {
buttons need to be displayed in an emoji font buttons need to be displayed in an emoji font
*/ */
#add-remove > button.emoji { #add-remove > button.emoji {
width: 32px;
font-family: 'Noto Emoji', sans-serif; font-family: 'Noto Emoji', sans-serif;
font-size: large;
} }
/* outline */ /* outline */
@ -89,22 +77,18 @@ summary.selected {
background-color: var(--selection-highlight); background-color: var(--selection-highlight);
} }
summary > div, .regulator { summary > div, .constraint {
padding-top: 4px; padding-top: 4px;
padding-bottom: 4px; padding-bottom: 4px;
} }
.element, .regulator { .element, .constraint {
display: flex; display: flex;
flex-grow: 1; flex-grow: 1;
padding-left: 8px; padding-left: 8px;
padding-right: 8px; padding-right: 8px;
} }
.element > input {
margin-left: 8px;
}
.element-switch { .element-switch {
width: 18px; width: 18px;
padding-left: 2px; padding-left: 2px;
@ -123,7 +107,7 @@ details[open]:has(li) .element-switch::after {
flex-grow: 1; flex-grow: 1;
} }
.regulator-label { .constraint-label {
flex-grow: 1; flex-grow: 1;
} }
@ -139,97 +123,45 @@ details[open]:has(li) .element-switch::after {
width: 56px; width: 56px;
} }
.regulator { .constraint {
font-style: italic; font-style: italic;
} }
.regulator-type { .constraint.invalid {
padding: 2px 8px 0px 8px; color: var(--text-invalid);
font-size: 10pt;
} }
.regulator-input { .constraint > input[type=checkbox] {
margin-right: 4px; margin: 0px 8px 0px 0px;
}
.constraint > input[type=text] {
color: inherit; color: inherit;
background-color: inherit; background-color: inherit;
border: 1px solid var(--border); border: 1px solid var(--border);
border-radius: 2px; border-radius: 2px;
} }
.regulator-input::placeholder { .constraint.invalid > input[type=text] {
color: inherit;
opacity: 54%;
font-style: italic;
}
.regulator-input.constraint {
background-color: var(--display-background);
}
.regulator-input.invalid {
color: var(--text-invalid);
border-color: var(--border-invalid); border-color: var(--border-invalid);
} }
.regulator-input.invalid + .status::after, details:has(.invalid):not([open]) .status::after { .status {
width: 20px;
padding-left: 4px;
text-align: center;
font-family: 'Noto Emoji';
font-style: normal;
}
.invalid > .status::after, details:has(.invalid):not([open]) .status::after {
content: '⚠'; content: '⚠';
color: var(--text-invalid); color: var(--text-invalid);
} }
/* diagnostics */
#diagnostics {
margin: 10px;
}
#diagnostics-bar {
display: flex;
gap: 8px;
}
#realization-status {
display: flex;
flex-grow: 1;
}
#realization-status .status {
margin-right: 4px;
}
#realization-status :not(.status) {
flex-grow: 1;
}
#realization-status .status::after {
content: '✓';
}
#realization-status.invalid .status::after {
content: '⚠';
}
#step-input > label {
padding-right: 4px;
}
#step-input > input {
width: 45px;
}
.diagnostics-panel {
margin-top: 10px;
min-height: 180px;
}
.diagnostics-chart {
background-color: var(--display-background);
border: 1px solid var(--border);
border-radius: 8px;
}
/* display */ /* display */
#display { canvas {
float: left; float: left;
margin-left: 20px; margin-left: 20px;
margin-top: 20px; margin-top: 20px;
@ -238,12 +170,6 @@ details[open]:has(li) .element-switch::after {
border-radius: 16px; border-radius: 16px;
} }
#display:focus { canvas:focus {
border-color: var(--border-focus-dark); border-color: var(--border-focus);
outline: none;
}
input:focus {
border-color: var(--border-focus-light);
outline: none;
} }

8
app-proto/run-examples Executable file
View file

@ -0,0 +1,8 @@
# based on "Enabling print statements in Cargo tests", by Jon Almeida
#
# https://jonalmeida.com/posts/2015/01/23/print-cargo/
#
cargo test -- --nocapture engine::tests::irisawa_hexlet_test
cargo test -- --nocapture engine::tests::three_spheres_example
cargo test -- --nocapture engine::tests::point_on_sphere_example

240
app-proto/src/add_remove.rs Normal file
View file

@ -0,0 +1,240 @@
use sycamore::prelude::*;
use web_sys::{console, wasm_bindgen::JsValue};
use crate::{engine, AppState, assembly::{Assembly, Constraint, Element}};
/* DEBUG */
// load an example assembly for testing. this code will be removed once we've
// built a more formal test assembly system
fn load_gen_assemb(assembly: &Assembly) {
let _ = assembly.try_insert_element(
Element::new(
String::from("gemini_a"),
String::from("Castor"),
[1.00_f32, 0.25_f32, 0.00_f32],
engine::sphere(0.5, 0.5, 0.0, 1.0)
)
);
let _ = assembly.try_insert_element(
Element::new(
String::from("gemini_b"),
String::from("Pollux"),
[0.00_f32, 0.25_f32, 1.00_f32],
engine::sphere(-0.5, -0.5, 0.0, 1.0)
)
);
let _ = assembly.try_insert_element(
Element::new(
String::from("ursa_major"),
String::from("Ursa major"),
[0.25_f32, 0.00_f32, 1.00_f32],
engine::sphere(-0.5, 0.5, 0.0, 0.75)
)
);
let _ = assembly.try_insert_element(
Element::new(
String::from("ursa_minor"),
String::from("Ursa minor"),
[0.25_f32, 1.00_f32, 0.00_f32],
engine::sphere(0.5, -0.5, 0.0, 0.5)
)
);
let _ = assembly.try_insert_element(
Element::new(
String::from("moon_deimos"),
String::from("Deimos"),
[0.75_f32, 0.75_f32, 0.00_f32],
engine::sphere(0.0, 0.15, 1.0, 0.25)
)
);
let _ = assembly.try_insert_element(
Element::new(
String::from("moon_phobos"),
String::from("Phobos"),
[0.00_f32, 0.75_f32, 0.50_f32],
engine::sphere(0.0, -0.15, -1.0, 0.25)
)
);
}
/* DEBUG */
// load an example assembly for testing. this code will be removed once we've
// built a more formal test assembly system
fn load_low_curv_assemb(assembly: &Assembly) {
let a = 0.75_f64.sqrt();
let _ = assembly.try_insert_element(
Element::new(
"central".to_string(),
"Central".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(0.0, 0.0, 0.0, 1.0)
)
);
let _ = assembly.try_insert_element(
Element::new(
"assemb_plane".to_string(),
"Assembly plane".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere_with_offset(0.0, 0.0, 1.0, 0.0, 0.0)
)
);
let _ = assembly.try_insert_element(
Element::new(
"side1".to_string(),
"Side 1".to_string(),
[1.00_f32, 0.00_f32, 0.25_f32],
engine::sphere_with_offset(1.0, 0.0, 0.0, 1.0, 0.0)
)
);
let _ = assembly.try_insert_element(
Element::new(
"side2".to_string(),
"Side 2".to_string(),
[0.25_f32, 1.00_f32, 0.00_f32],
engine::sphere_with_offset(-0.5, a, 0.0, 1.0, 0.0)
)
);
let _ = assembly.try_insert_element(
Element::new(
"side3".to_string(),
"Side 3".to_string(),
[0.00_f32, 0.25_f32, 1.00_f32],
engine::sphere_with_offset(-0.5, -a, 0.0, 1.0, 0.0)
)
);
let _ = assembly.try_insert_element(
Element::new(
"corner1".to_string(),
"Corner 1".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(-4.0/3.0, 0.0, 0.0, 1.0/3.0)
)
);
let _ = assembly.try_insert_element(
Element::new(
"corner2".to_string(),
"Corner 2".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(2.0/3.0, -4.0/3.0 * a, 0.0, 1.0/3.0)
)
);
let _ = assembly.try_insert_element(
Element::new(
String::from("corner3"),
String::from("Corner 3"),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(2.0/3.0, 4.0/3.0 * a, 0.0, 1.0/3.0)
)
);
}
#[component]
pub fn AddRemove() -> View {
/* DEBUG */
let assembly_name = create_signal("general".to_string());
create_effect(move || {
// get name of chosen assembly
let name = assembly_name.get_clone();
console::log_1(
&JsValue::from(format!("Showing assembly \"{}\"", name.clone()))
);
batch(|| {
let state = use_context::<AppState>();
let assembly = &state.assembly;
// clear state
assembly.elements.update(|elts| elts.clear());
assembly.elements_by_id.update(|elts_by_id| elts_by_id.clear());
state.selection.update(|sel| sel.clear());
// load assembly
match name.as_str() {
"general" => load_gen_assemb(assembly),
"low-curv" => load_low_curv_assemb(assembly),
_ => ()
};
});
});
view! {
div(id="add-remove") {
button(
on:click=|_| {
let state = use_context::<AppState>();
state.assembly.insert_new_element();
/* DEBUG */
// print updated list of elements by identifier
console::log_1(&JsValue::from("elements by identifier:"));
for (id, key) in state.assembly.elements_by_id.get_clone().iter() {
console::log_3(
&JsValue::from(" "),
&JsValue::from(id),
&JsValue::from(*key)
);
}
}
) { "+" }
button(
class="emoji", /* KLUDGE */ // for convenience, we're using an emoji as a temporary icon for this button
disabled={
let state = use_context::<AppState>();
state.selection.with(|sel| sel.len() != 2)
},
on:click=|_| {
let state = use_context::<AppState>();
let subjects = state.selection.with(
|sel| {
let subject_vec: Vec<_> = sel.into_iter().collect();
(subject_vec[0].clone(), subject_vec[1].clone())
}
);
let lorentz_prod = create_signal(0.0);
let lorentz_prod_valid = create_signal(false);
let active = create_signal(true);
state.assembly.insert_constraint(Constraint {
subjects: subjects,
lorentz_prod: lorentz_prod,
lorentz_prod_text: create_signal(String::new()),
lorentz_prod_valid: lorentz_prod_valid,
active: active,
});
state.selection.update(|sel| sel.clear());
/* DEBUG */
// print updated constraint list
console::log_1(&JsValue::from("Constraints:"));
state.assembly.constraints.with(|csts| {
for (_, cst) in csts.into_iter() {
console::log_5(
&JsValue::from(" "),
&JsValue::from(cst.subjects.0),
&JsValue::from(cst.subjects.1),
&JsValue::from(":"),
&JsValue::from(cst.lorentz_prod.get_untracked())
);
}
});
// update the realization when the constraint becomes active
// and valid, or is edited while active and valid
create_effect(move || {
console::log_1(&JsValue::from(
format!("Constraint ({}, {}) updated", subjects.0, subjects.1)
));
lorentz_prod.track();
if active.get() && lorentz_prod_valid.get() {
state.assembly.realize();
}
});
}
) { "🔗" }
select(bind:value=assembly_name) { /* DEBUG */ // example assembly chooser
option(value="general") { "General" }
option(value="low-curv") { "Low-curvature" }
option(value="empty") { "Empty" }
}
}
}
}

File diff suppressed because it is too large Load diff

View file

@ -1,5 +0,0 @@
pub mod add_remove;
pub mod diagnostics;
pub mod display;
pub mod outline;
pub mod test_assembly_chooser;

View file

@ -1,71 +0,0 @@
use std::rc::Rc;
use sycamore::prelude::*;
use super::test_assembly_chooser::TestAssemblyChooser;
use crate::{
AppState,
assembly::{InversiveDistanceRegulator, Point, Sphere},
};
#[component]
pub fn AddRemove() -> View {
view! {
div(id = "add-remove") {
button(
on:click = |_| {
let state = use_context::<AppState>();
batch(|| {
// this call is batched to avoid redundant realizations.
// it updates the element list and the regulator list,
// which are both tracked by the realization effect
/* TO DO */
// it would make more to do the batching inside
// `insert_element_default`, but that will have to wait
// until Sycamore handles nested batches correctly.
//
// https://github.com/sycamore-rs/sycamore/issues/802
//
// the nested batch issue is relevant here because the
// assembly loaders in the test assembly chooser use
// `insert_element_default` within larger batches
state.assembly.insert_element_default::<Sphere>();
});
}
) { "Add sphere" }
button(
on:click = |_| {
let state = use_context::<AppState>();
state.assembly.insert_element_default::<Point>();
}
) { "Add point" }
button(
/* KLUDGE */ // for convenience, we're using an emoji as an
// icon for this button
class = "emoji",
disabled = {
let state = use_context::<AppState>();
state.selection.with(|sel| sel.len() != 2)
},
on:click = |_| {
let state = use_context::<AppState>();
let subjects: [_; 2] = state.selection.with(
// the button is only enabled when two elements are
// selected, so we know the cast to a two-element array
// will succeed
|sel| sel
.clone()
.into_iter()
.collect::<Vec<_>>()
.try_into()
.unwrap()
);
state.assembly.insert_regulator(
Rc::new(InversiveDistanceRegulator::new(subjects))
);
state.selection.update(|sel| sel.clear());
}
) { "🔗" }
TestAssemblyChooser {}
}
}
}

View file

@ -1,320 +0,0 @@
use charming::{
Chart,
WasmRenderer,
component::{Axis, DataZoom, Grid},
element::{AxisType, Symbol},
series::{Line, Scatter},
};
use sycamore::prelude::*;
use crate::{AppState, specified::SpecifiedValue};
#[derive(Clone)]
struct DiagnosticsState {
active_tab: Signal<String>,
}
impl DiagnosticsState {
fn new(initial_tab: String) -> Self {
Self { active_tab: create_signal(initial_tab) }
}
}
// a realization status indicator
#[component]
fn RealizationStatus() -> View {
let state = use_context::<AppState>();
let realization_status = state.assembly.realization_status;
view! {
div(
id = "realization-status",
class = realization_status.with(
|status| match status {
Ok(_) => "",
Err(_) => "invalid",
}
)
) {
div(class = "status")
div {
(realization_status.with(
|status| match status {
Ok(_) => "Target accuracy achieved".to_string(),
Err(message) => message.clone(),
}
))
}
}
}
}
// history step input
#[component]
fn StepInput() -> View {
// get the assembly
let state = use_context::<AppState>();
let assembly = state.assembly;
// the `last_step` signal holds the index of the last step
let last_step = assembly.descent_history.map(
|history| match history.config.len() {
0 => None,
n => Some(n - 1),
}
);
let input_max = last_step.map(|last| last.unwrap_or(0));
// these signals hold the entered step number
let value = create_signal(String::new());
let value_as_number = create_signal(0.0);
create_effect(move || {
value.set(assembly.step.with(|n| n.spec.clone()));
});
view! {
div(id = "step-input") {
label { "Step" }
input(
r#type = "number",
min = "0",
max = input_max.with(|max| max.to_string()),
bind:value = value,
bind:valueAsNumber = value_as_number,
on:change = move |_| {
if last_step.with(|last| last.is_some()) {
// clamp the step within its allowed range. the lower
// bound is redundant on browsers that make it
// impossible to type negative values into a number
// input with a non-negative `min`, but there's no harm
// in being careful
let step_raw = value.with(
|val| SpecifiedValue::try_from(val.clone())
.unwrap_or(SpecifiedValue::from_empty_spec()
)
);
let step = SpecifiedValue::from(
step_raw.value.map(
|val| val.clamp(0.0, input_max.get() as f64)
)
);
// set the input string and the assembly's active step
value.set(step.spec.clone());
assembly.step.set(step);
} else {
value.set(String::new());
}
},
)
}
}
}
fn into_log10_time_point((step, value): (usize, f64)) -> Vec<Option<f64>> {
vec![
Some(step as f64),
if value == 0.0 { None } else { Some(value.abs().log10()) },
]
}
// the loss history from the last realization
#[component]
fn LossHistory() -> View {
const CONTAINER_ID: &str = "loss-history";
let state = use_context::<AppState>();
let renderer = WasmRenderer::new_opt(None, Some(178));
on_mount(move || {
create_effect(move || {
// get the loss history
let scaled_loss: Vec<_> = state.assembly.descent_history.with(
|history| history.scaled_loss
.iter()
.enumerate()
.map(|(step, &loss)| (step, loss))
.map(into_log10_time_point)
.collect()
);
// initialize the chart axes
let step_axis = Axis::new()
.type_(AxisType::Category)
.boundary_gap(false);
let scaled_loss_axis = Axis::new();
// load the chart data. when there's no history, we load the data
// point (0, None) to clear the chart. it would feel more natural to
// load empty data vectors, but that turns out not to clear the
// chart: it instead leads to previous data being re-used
let scaled_loss_series = Line::new().data(
if scaled_loss.len() > 0 {
scaled_loss
} else {
vec![vec![Some(0.0), None::<f64>]]
}
);
let chart = Chart::new()
.animation(false)
.data_zoom(DataZoom::new().y_axis_index(0).right(40))
.x_axis(step_axis)
.y_axis(scaled_loss_axis)
.grid(Grid::new().top(20).right(80).bottom(30).left(60))
.series(scaled_loss_series);
renderer.render(CONTAINER_ID, &chart).unwrap();
});
});
view! {
div(id = CONTAINER_ID, class = "diagnostics-chart")
}
}
// the spectrum of the Hessian during the last realization
#[component]
fn SpectrumHistory() -> View {
const CONTAINER_ID: &str = "spectrum-history";
let state = use_context::<AppState>();
let renderer = WasmRenderer::new(478, 178);
on_mount(move || {
create_effect(move || {
// get the spectrum of the Hessian at each step, split into its
// positive, negative, and strictly-zero parts
let (
hess_eigvals_zero,
hess_eigvals_nonzero,
): (Vec<_>, Vec<_>) = state.assembly.descent_history.with(
|history| history.hess_eigvals
.iter()
.enumerate()
.map(
|(step, eigvals)| eigvals.iter().map(
move |&val| (step, val)
)
)
.flatten()
.partition(|&(_, val)| val == 0.0)
);
let zero_level = hess_eigvals_nonzero
.iter()
.map(|(_, val)| val.abs())
.reduce(f64::min)
.map(|val| 0.1 * val)
.unwrap_or(1.0);
let (
hess_eigvals_pos,
hess_eigvals_neg,
): (Vec<_>, Vec<_>) = hess_eigvals_nonzero
.into_iter()
.partition(|&(_, val)| val > 0.0);
// initialize the chart axes
let step_axis = Axis::new()
.type_(AxisType::Category)
.boundary_gap(false);
let eigval_axis = Axis::new();
// load the chart data. when there's no history, we load the data
// point (0, None) to clear the chart. it would feel more natural to
// load empty data vectors, but that turns out not to clear the
// chart: it instead leads to previous data being re-used
let eigval_series_pos = Scatter::new()
.symbol_size(4.5)
.data(
if hess_eigvals_pos.len() > 0 {
hess_eigvals_pos
.into_iter()
.map(into_log10_time_point)
.collect()
} else {
vec![vec![Some(0.0), None::<f64>]]
}
);
let eigval_series_neg = Scatter::new()
.symbol(Symbol::Diamond)
.symbol_size(6.0)
.data(
if hess_eigvals_neg.len() > 0 {
hess_eigvals_neg
.into_iter()
.map(into_log10_time_point)
.collect()
} else {
vec![vec![Some(0.0), None::<f64>]]
}
);
let eigval_series_zero = Scatter::new()
.symbol(Symbol::Triangle)
.symbol_size(5.0)
.data(
if hess_eigvals_zero.len() > 0 {
hess_eigvals_zero
.into_iter()
.map(|(step, _)| (step, zero_level))
.map(into_log10_time_point)
.collect()
} else {
vec![vec![Some(0.0), None::<f64>]]
}
);
let chart = Chart::new()
.animation(false)
.data_zoom(DataZoom::new().y_axis_index(0).right(40))
.x_axis(step_axis)
.y_axis(eigval_axis)
.grid(Grid::new().top(20).right(80).bottom(30).left(60))
.series(eigval_series_pos)
.series(eigval_series_neg)
.series(eigval_series_zero);
renderer.render(CONTAINER_ID, &chart).unwrap();
});
});
view! {
div(id = CONTAINER_ID, class = "diagnostics-chart")
}
}
#[component(inline_props)]
fn DiagnosticsPanel(name: &'static str, children: Children) -> View {
let diagnostics_state = use_context::<DiagnosticsState>();
view! {
div(
class = "diagnostics-panel",
"hidden" = diagnostics_state.active_tab.with(
|active_tab| {
if active_tab == name {
None
} else {
Some("")
}
}
)
) {
(children)
}
}
}
#[component]
pub fn Diagnostics() -> View {
let diagnostics_state = DiagnosticsState::new("loss".to_string());
let active_tab = diagnostics_state.active_tab.clone();
provide_context(diagnostics_state);
view! {
div(id = "diagnostics") {
div(id = "diagnostics-bar") {
RealizationStatus {}
select(bind:value = active_tab) {
option(value = "loss") { "Loss" }
option(value = "spectrum") { "Spectrum" }
}
StepInput {}
}
DiagnosticsPanel(name = "loss") { LossHistory {} }
DiagnosticsPanel(name = "spectrum") { SpectrumHistory {} }
}
}
}

View file

@ -1,991 +0,0 @@
use core::array;
use nalgebra::{DMatrix, DVector, Rotation3, Vector3};
use std::rc::Rc;
use sycamore::{prelude::*, motion::create_raf};
use web_sys::{
console,
window,
KeyboardEvent,
MouseEvent,
WebGl2RenderingContext,
WebGlBuffer,
WebGlProgram,
WebGlShader,
WebGlUniformLocation,
wasm_bindgen::{JsCast, JsValue},
};
use crate::{
AppState,
assembly::{Element, ElementColor, ElementMotion, Point, Sphere},
};
// --- color ---
const COLOR_SIZE: usize = 3;
type ColorWithOpacity = [f32; COLOR_SIZE + 1];
fn combine_channels(color: ElementColor, opacity: f32) -> ColorWithOpacity {
let mut color_with_opacity = [0.0; COLOR_SIZE + 1];
color_with_opacity[..COLOR_SIZE].copy_from_slice(&color);
color_with_opacity[COLOR_SIZE] = opacity;
color_with_opacity
}
// --- scene data ---
struct SceneSpheres {
representations: Vec<DVector<f64>>,
colors_with_opacity: Vec<ColorWithOpacity>,
highlights: Vec<f32>,
}
impl SceneSpheres {
fn new() -> Self {
Self {
representations: Vec::new(),
colors_with_opacity: Vec::new(),
highlights: Vec::new(),
}
}
fn len_i32(&self) -> i32 {
self.representations.len().try_into()
.expect("Number of spheres must fit in a 32-bit integer")
}
fn push(
&mut self, representation: DVector<f64>,
color: ElementColor, opacity: f32, highlight: f32,
) {
self.representations.push(representation);
self.colors_with_opacity.push(combine_channels(color, opacity));
self.highlights.push(highlight);
}
}
struct ScenePoints {
representations: Vec<DVector<f64>>,
colors_with_opacity: Vec<ColorWithOpacity>,
highlights: Vec<f32>,
selections: Vec<f32>,
}
impl ScenePoints {
fn new() -> Self {
Self {
representations: Vec::new(),
colors_with_opacity: Vec::new(),
highlights: Vec::new(),
selections: Vec::new(),
}
}
fn push(
&mut self, representation: DVector<f64>,
color: ElementColor, opacity: f32, highlight: f32, selected: bool,
) {
self.representations.push(representation);
self.colors_with_opacity.push(combine_channels(color, opacity));
self.highlights.push(highlight);
self.selections.push(if selected { 1.0 } else { 0.0 });
}
}
pub struct Scene {
spheres: SceneSpheres,
points: ScenePoints,
}
impl Scene {
fn new() -> Self {
Self {
spheres: SceneSpheres::new(),
points: ScenePoints::new(),
}
}
}
pub trait DisplayItem {
fn show(&self, scene: &mut Scene, selected: bool);
// the smallest positive depth, represented as a multiple of `dir`, where
// the line generated by `dir` hits the element. returns `None` if the line
// misses the element
fn cast(
&self,
dir: Vector3<f64>,
assembly_to_world: &DMatrix<f64>,
pixel_size: f64,
) -> Option<f64>;
}
impl DisplayItem for Sphere {
fn show(&self, scene: &mut Scene, selected: bool) {
/* SCAFFOLDING */
const DEFAULT_OPACITY: f32 = 0.5;
const GHOST_OPACITY: f32 = 0.2;
const HIGHLIGHT: f32 = 0.2;
let representation = self.representation.get_clone_untracked();
let color = if selected { self.color.map(|channel| 0.2 + 0.8*channel) }
else { self.color };
let opacity = if self.ghost.get() { GHOST_OPACITY }
else { DEFAULT_OPACITY };
let highlight = if selected { 1.0 } else { HIGHLIGHT };
scene.spheres.push(representation, color, opacity, highlight);
}
// this method should be kept synchronized with `sphere_cast` in
// `spheres.frag`, which does essentially the same thing on the GPU side
fn cast(
&self,
dir: Vector3<f64>,
assembly_to_world: &DMatrix<f64>,
_pixel_size: f64,
) -> Option<f64> {
// if `a/b` is less than this threshold, we approximate
// `a*u^2 + b*u + c` by the linear function `b*u + c`
const DEG_THRESHOLD: f64 = 1e-9;
let rep = self.representation
.with_untracked(|rep| assembly_to_world * rep);
let a = -rep[3] * dir.norm_squared();
let b = rep.rows_range(..3).dot(&dir);
let c = -rep[4];
let adjust = 4.0*a*c/(b*b);
if adjust < 1.0 {
// as long as `b` is non-zero, the linear approximation of
//
// a*u^2 + b*u + c
//
// at `u = 0` will reach zero at a finite depth `u_lin`. the root of
// the quadratic adjacent to `u_lin` is stored in `lin_root`. if
// both roots have the same sign, `lin_root` will be the one closer
// to `u = 0`
let square_rect_ratio = 1.0 + (1.0 - adjust).sqrt();
let lin_root = -(2.0*c)/b / square_rect_ratio;
if a.abs() > DEG_THRESHOLD * b.abs() {
if lin_root > 0.0 {
Some(lin_root)
} else {
let other_root = -b/(2.*a) * square_rect_ratio;
(other_root > 0.0).then_some(other_root)
}
} else {
(lin_root > 0.0).then_some(lin_root)
}
} else {
// the line through `dir` misses the sphere completely
None
}
}
}
impl DisplayItem for Point {
fn show(&self, scene: &mut Scene, selected: bool) {
/* SCAFFOLDING */
const GHOST_OPACITY: f32 = 0.4;
const HIGHLIGHT: f32 = 0.5;
let representation = self.representation.get_clone_untracked();
let color = if selected { self.color.map(|channel| 0.2 + 0.8*channel) }
else { self.color };
let opacity = if self.ghost.get() { GHOST_OPACITY } else { 1.0 };
let highlight = if selected { 1.0 } else { HIGHLIGHT };
scene.points.push(representation, color, opacity, highlight, selected);
}
/* SCAFFOLDING */
fn cast(
&self,
dir: Vector3<f64>,
assembly_to_world: &DMatrix<f64>,
pixel_size: f64,
) -> Option<f64> {
let rep = self.representation
.with_untracked(|rep| assembly_to_world * rep);
if rep[2] < 0.0 {
// this constant should be kept synchronized with `point.frag`
const POINT_RADIUS_PX: f64 = 4.0;
// find the radius of the point in screen projection units
let point_radius_proj = POINT_RADIUS_PX * pixel_size;
// find the squared distance between the screen projections of the
// ray and the point
let dir_proj = -dir.fixed_rows::<2>(0) / dir[2];
let rep_proj = -rep.fixed_rows::<2>(0) / rep[2];
let dist_sq = (dir_proj - rep_proj).norm_squared();
// if the ray hits the point, return its depth
if dist_sq < point_radius_proj * point_radius_proj {
Some(rep[2] / dir[2])
} else {
None
}
} else {
None
}
}
}
// --- WebGL utilities ---
fn compile_shader(
context: &WebGl2RenderingContext,
shader_type: u32,
source: &str,
) -> WebGlShader {
let shader = context.create_shader(shader_type).unwrap();
context.shader_source(&shader, source);
context.compile_shader(&shader);
shader
}
fn set_up_program(
context: &WebGl2RenderingContext,
vertex_shader_source: &str,
fragment_shader_source: &str,
) -> WebGlProgram {
// compile the shaders
let vertex_shader = compile_shader(
&context,
WebGl2RenderingContext::VERTEX_SHADER,
vertex_shader_source,
);
let fragment_shader = compile_shader(
&context,
WebGl2RenderingContext::FRAGMENT_SHADER,
fragment_shader_source,
);
// create the program and attach the shaders
let program = context.create_program().unwrap();
context.attach_shader(&program, &vertex_shader);
context.attach_shader(&program, &fragment_shader);
context.link_program(&program);
/* DEBUG */
// report whether linking succeeded
let link_status = context
.get_program_parameter(&program, WebGl2RenderingContext::LINK_STATUS)
.as_bool()
.unwrap();
let link_msg = if link_status {
"Linked successfully"
} else {
"Linking failed"
};
console::log_1(&JsValue::from(link_msg));
program
}
fn get_uniform_array_locations<const N: usize>(
context: &WebGl2RenderingContext,
program: &WebGlProgram,
var_name: &str,
member_name_opt: Option<&str>,
) -> [Option<WebGlUniformLocation>; N] {
array::from_fn(|n| {
let name = match member_name_opt {
Some(member_name) => format!("{var_name}[{n}].{member_name}"),
None => format!("{var_name}[{n}]"),
};
context.get_uniform_location(&program, name.as_str())
})
}
// bind the given vertex buffer object to the given vertex attribute
fn bind_to_attribute(
context: &WebGl2RenderingContext,
attr_index: u32,
attr_size: i32,
buffer: &Option<WebGlBuffer>,
) {
context.bind_buffer(WebGl2RenderingContext::ARRAY_BUFFER, buffer.as_ref());
context.vertex_attrib_pointer_with_i32(
attr_index,
attr_size,
WebGl2RenderingContext::FLOAT,
false, // don't normalize
0, // zero stride
0, // zero offset
);
}
// load the given data into a new vertex buffer object
fn load_new_buffer(
context: &WebGl2RenderingContext,
data: &[f32],
) -> Option<WebGlBuffer> {
// create a buffer and bind it to ARRAY_BUFFER
let buffer = context.create_buffer();
context.bind_buffer(WebGl2RenderingContext::ARRAY_BUFFER, buffer.as_ref());
// load the given data into the buffer. this block is unsafe because
// `Float32Array::view` creates a raw view into our module's
// `WebAssembly.Memory` buffer. allocating more memory will change the
// buffer, invalidating the view, so we have to make sure we don't allocate
// any memory until the view is dropped. we're okay here because the view is
// used as soon as it's created
unsafe {
context.buffer_data_with_array_buffer_view(
WebGl2RenderingContext::ARRAY_BUFFER,
&js_sys::Float32Array::view(&data),
WebGl2RenderingContext::STATIC_DRAW,
);
}
buffer
}
fn bind_new_buffer_to_attribute(
context: &WebGl2RenderingContext,
attr_index: u32,
attr_size: i32,
data: &[f32],
) {
let buffer = load_new_buffer(context, data);
bind_to_attribute(context, attr_index, attr_size, &buffer);
}
// the direction in camera space that a mouse event is pointing along
fn event_dir(event: &MouseEvent) -> (Vector3<f64>, f64) {
let target: web_sys::Element = event.target().unwrap().unchecked_into();
let rect = target.get_bounding_client_rect();
let width = rect.width();
let height = rect.height();
let shortdim = width.min(height);
// this constant should be kept synchronized with `spheres.frag` and
// `point.vert`
const FOCAL_SLOPE: f64 = 0.3;
let x_relative = f64::from(event.client_x()) - rect.left();
let y_relative = rect.bottom() - f64::from(event.client_y());
(
Vector3::new(
FOCAL_SLOPE * (2.0*x_relative - width) / shortdim,
FOCAL_SLOPE * (2.0*y_relative - height) / shortdim,
-1.0,
),
FOCAL_SLOPE * 2.0 / shortdim,
)
}
// --- display component ---
#[component]
pub fn Display() -> View {
let state = use_context::<AppState>();
// canvas
let display = create_node_ref();
// viewpoint
let assembly_to_world = create_signal(DMatrix::<f64>::identity(5, 5));
// navigation
let pitch_up = create_signal(0.0);
let pitch_down = create_signal(0.0);
let yaw_right = create_signal(0.0);
let yaw_left = create_signal(0.0);
let roll_ccw = create_signal(0.0);
let roll_cw = create_signal(0.0);
let zoom_in = create_signal(0.0);
let zoom_out = create_signal(0.0);
let turntable = create_signal(false); /* BENCHMARKING */
// manipulation
let translate_neg_x = create_signal(0.0);
let translate_pos_x = create_signal(0.0);
let translate_neg_y = create_signal(0.0);
let translate_pos_y = create_signal(0.0);
let translate_neg_z = create_signal(0.0);
let translate_pos_z = create_signal(0.0);
let shrink_neg = create_signal(0.0);
let shrink_pos = create_signal(0.0);
// change listener
let scene_changed = create_signal(true);
create_effect(move || {
state.assembly.elements.with(|elts| {
for elt in elts {
elt.representation().track();
elt.ghost().track();
}
});
state.selection.track();
scene_changed.set(true);
});
/* INSTRUMENTS */
const SAMPLE_PERIOD: i32 = 60;
let mut last_sample_time = 0.0;
let mut frames_since_last_sample = 0;
let mean_frame_interval = create_signal(0.0);
let assembly_for_raf = state.assembly.clone();
on_mount(move || {
// timing
let mut last_time = 0.0;
// viewpoint
const ROT_SPEED: f64 = 0.4; // in radians per second
const ZOOM_SPEED: f64 = 0.15; // multiplicative rate per second
const TURNTABLE_SPEED: f64 = 0.1; /* BENCHMARKING */
let mut orientation = DMatrix::<f64>::identity(5, 5);
let mut rotation = DMatrix::<f64>::identity(5, 5);
let mut location_z: f64 = 5.0;
// manipulation
const TRANSLATION_SPEED: f64 = 0.15; // in length units per second
const SHRINKING_SPEED: f64 = 0.15; // in length units per second
// display parameters
const LAYER_THRESHOLD: i32 = 0; /* DEBUG */
const DEBUG_MODE: i32 = 0; /* DEBUG */
/* INSTRUMENTS */
let performance = window().unwrap().performance().unwrap();
// get the display canvas
let canvas
= display.get().unchecked_into::<web_sys::HtmlCanvasElement>();
let ctx = canvas
.get_context("webgl2")
.unwrap()
.unwrap()
.dyn_into::<WebGl2RenderingContext>()
.unwrap();
// disable depth testing
ctx.disable(WebGl2RenderingContext::DEPTH_TEST);
// set blend mode
ctx.enable(WebGl2RenderingContext::BLEND);
ctx.blend_func(
WebGl2RenderingContext::SRC_ALPHA,
WebGl2RenderingContext::ONE_MINUS_SRC_ALPHA,
);
// set up the sphere rendering program
let sphere_program = set_up_program(
&ctx,
include_str!("identity.vert"),
include_str!("spheres.frag"),
);
// set up the point rendering program
let point_program = set_up_program(
&ctx,
include_str!("point.vert"),
include_str!("point.frag"),
);
/* DEBUG */
// print the maximum number of vectors that can be passed as
// uniforms to a fragment shader. the OpenGL ES 3.0 standard
// requires this maximum to be at least 224, as discussed in the
// documentation of the GL_MAX_FRAGMENT_UNIFORM_VECTORS parameter
// here:
//
// https://registry.khronos.org/OpenGL-Refpages/es3.0/html/glGet.xhtml
//
// there are also other size limits. for example, on Aaron's
// machine, the the length of a float or genType array seems to be
// capped at 1024 elements
console::log_2(
&ctx.get_parameter(
WebGl2RenderingContext::MAX_FRAGMENT_UNIFORM_VECTORS
).unwrap(),
&JsValue::from("uniform vectors available"),
);
// find the sphere program's vertex attribute
let viewport_position_attr = ctx
.get_attrib_location(&sphere_program, "position") as u32;
// find the sphere program's uniforms
const SPHERE_MAX: usize = 200;
let sphere_cnt_loc = ctx
.get_uniform_location(&sphere_program, "sphere_cnt");
let sphere_sp_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &sphere_program, "sphere_list", Some("sp")
);
let sphere_lt_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &sphere_program, "sphere_list", Some("lt")
);
let sphere_color_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &sphere_program, "color_list", None
);
let sphere_highlight_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &sphere_program, "highlight_list", None
);
let resolution_loc = ctx
.get_uniform_location(&sphere_program, "resolution");
let shortdim_loc = ctx
.get_uniform_location(&sphere_program, "shortdim");
let layer_threshold_loc = ctx
.get_uniform_location(&sphere_program, "layer_threshold");
let debug_mode_loc = ctx
.get_uniform_location(&sphere_program, "debug_mode");
// load the viewport vertex positions into a new vertex buffer object
const VERTEX_CNT: usize = 6;
let viewport_positions: [f32; 3*VERTEX_CNT] = [
// northwest triangle
-1.0, -1.0, 0.0,
-1.0, 1.0, 0.0,
1.0, 1.0, 0.0,
// southeast triangle
-1.0, -1.0, 0.0,
1.0, 1.0, 0.0,
1.0, -1.0, 0.0,
];
let viewport_position_buffer
= load_new_buffer(&ctx, &viewport_positions);
// find the point program's vertex attributes
let point_position_attr = ctx
.get_attrib_location(&point_program, "position") as u32;
let point_color_attr = ctx
.get_attrib_location(&point_program, "color") as u32;
let point_highlight_attr = ctx
.get_attrib_location(&point_program, "highlight") as u32;
let point_selection_attr = ctx
.get_attrib_location(&point_program, "selected") as u32;
// set up a repainting routine
let (_, start_animation_loop, _) = create_raf(move || {
// get the time step
let time = performance.now();
let time_step = 0.001*(time - last_time);
last_time = time;
// get the navigation state
let pitch_up_val = pitch_up.get();
let pitch_down_val = pitch_down.get();
let yaw_right_val = yaw_right.get();
let yaw_left_val = yaw_left.get();
let roll_ccw_val = roll_ccw.get();
let roll_cw_val = roll_cw.get();
let zoom_in_val = zoom_in.get();
let zoom_out_val = zoom_out.get();
let turntable_val = turntable.get(); /* BENCHMARKING */
// get the manipulation state
let translate_neg_x_val = translate_neg_x.get();
let translate_pos_x_val = translate_pos_x.get();
let translate_neg_y_val = translate_neg_y.get();
let translate_pos_y_val = translate_pos_y.get();
let translate_neg_z_val = translate_neg_z.get();
let translate_pos_z_val = translate_pos_z.get();
let shrink_neg_val = shrink_neg.get();
let shrink_pos_val = shrink_pos.get();
// update the assembly's orientation
let ang_vel = {
let pitch = pitch_up_val - pitch_down_val;
let yaw = yaw_right_val - yaw_left_val;
let roll = roll_ccw_val - roll_cw_val;
if pitch != 0.0 || yaw != 0.0 || roll != 0.0 {
ROT_SPEED * Vector3::new(-pitch, yaw, roll).normalize()
} else {
Vector3::zeros()
}
} /* BENCHMARKING */ + if turntable_val {
Vector3::new(0.0, TURNTABLE_SPEED, 0.0)
} else {
Vector3::zeros()
};
let mut rotation_sp = rotation.fixed_view_mut::<3, 3>(0, 0);
rotation_sp.copy_from(
Rotation3::from_scaled_axis(time_step * ang_vel).matrix()
);
orientation = &rotation * &orientation;
// update the assembly's location
let zoom = zoom_out_val - zoom_in_val;
location_z *= (time_step * ZOOM_SPEED * zoom).exp();
// manipulate the assembly
/* KLUDGE */
// to avoid the complexity of making tangent space projection
// conditional and dealing with unnormalized representation vectors,
// we only allow manipulation when we're looking at the last step of
// a successful realization
let realization_successful = state.assembly.realization_status.with(
|status| status.is_ok()
);
let step_val = state.assembly
.step.with_untracked(|step| step.value);
let on_init_step = step_val.is_some_and(|n| n == 0.0);
let on_last_step = step_val.is_some_and(
|n| state.assembly.descent_history.with_untracked(
|history| n as usize + 1 == history.config.len().max(1)
)
);
let on_manipulable_step =
!realization_successful && on_init_step
|| realization_successful && on_last_step;
if on_manipulable_step
&& state.selection.with(|sel| sel.len() == 1)
{
let sel = state.selection.with(
|sel| sel.into_iter().next().unwrap().clone()
);
let translate_x = translate_pos_x_val - translate_neg_x_val;
let translate_y = translate_pos_y_val - translate_neg_y_val;
let translate_z = translate_pos_z_val - translate_neg_z_val;
let shrink = shrink_pos_val - shrink_neg_val;
let translating =
translate_x != 0.0
|| translate_y != 0.0
|| translate_z != 0.0;
if translating || shrink != 0.0 {
let elt_motion = {
let u = if translating {
TRANSLATION_SPEED * Vector3::new(
translate_x, translate_y, translate_z
).normalize()
} else {
Vector3::zeros()
};
time_step * DVector::from_column_slice(
&[u[0], u[1], u[2], SHRINKING_SPEED * shrink]
)
};
assembly_for_raf.deform(
vec![
ElementMotion {
element: sel,
velocity: elt_motion.as_view(),
}
]
);
scene_changed.set(true);
}
}
if scene_changed.get() {
const SPACE_DIM: usize = 3;
const COLOR_SIZE: usize = 3;
/* INSTRUMENTS */
// measure mean frame interval
frames_since_last_sample += 1;
if frames_since_last_sample >= SAMPLE_PERIOD {
mean_frame_interval
.set((time - last_sample_time) / SAMPLE_PERIOD as f64);
last_sample_time = time;
frames_since_last_sample = 0;
}
// --- get the assembly ---
let mut scene = Scene::new();
// find the map from assembly space to world space
let location = {
let u = -location_z;
DMatrix::from_column_slice(5, 5, &[
1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, u,
0.0, 0.0, 2.0*u, 1.0, u*u,
0.0, 0.0, 0.0, 0.0, 1.0,
])
};
let asm_to_world = &location * &orientation;
// set up the scene
state.assembly.elements.with_untracked(
|elts| for elt in elts {
let selected = state.selection
.with(|sel| sel.contains(elt));
elt.show(&mut scene, selected);
}
);
let sphere_cnt = scene.spheres.len_i32();
// --- draw the spheres ---
// use the sphere rendering program
ctx.use_program(Some(&sphere_program));
// enable the sphere program's vertex attribute
ctx.enable_vertex_attrib_array(viewport_position_attr);
// write the spheres in world coordinates
let sphere_reps_world: Vec<_> = scene.spheres.representations
.into_iter()
.map(|rep| (&asm_to_world * rep).cast::<f32>())
.collect();
// set the resolution
let width = canvas.width() as f32;
let height = canvas.height() as f32;
ctx.uniform2f(resolution_loc.as_ref(), width, height);
ctx.uniform1f(shortdim_loc.as_ref(), width.min(height));
// pass the scene data
ctx.uniform1i(sphere_cnt_loc.as_ref(), sphere_cnt);
for n in 0..sphere_reps_world.len() {
let v = &sphere_reps_world[n];
ctx.uniform3fv_with_f32_array(
sphere_sp_locs[n].as_ref(),
v.rows(0, 3).as_slice(),
);
ctx.uniform2fv_with_f32_array(
sphere_lt_locs[n].as_ref(),
v.rows(3, 2).as_slice(),
);
ctx.uniform4fv_with_f32_array(
sphere_color_locs[n].as_ref(),
&scene.spheres.colors_with_opacity[n],
);
ctx.uniform1f(
sphere_highlight_locs[n].as_ref(),
scene.spheres.highlights[n],
);
}
// pass the display parameters
ctx.uniform1i(layer_threshold_loc.as_ref(), LAYER_THRESHOLD);
ctx.uniform1i(debug_mode_loc.as_ref(), DEBUG_MODE);
// bind the viewport vertex position buffer to the position
// attribute in the vertex shader
bind_to_attribute(
&ctx, viewport_position_attr,
SPACE_DIM as i32, &viewport_position_buffer,
);
// draw the scene
ctx.draw_arrays(
WebGl2RenderingContext::TRIANGLES, 0, VERTEX_CNT as i32);
// disable the sphere program's vertex attribute
ctx.disable_vertex_attrib_array(viewport_position_attr);
// --- draw the points ---
if !scene.points.representations.is_empty() {
// use the point rendering program
ctx.use_program(Some(&point_program));
// enable the point program's vertex attributes
ctx.enable_vertex_attrib_array(point_position_attr);
ctx.enable_vertex_attrib_array(point_color_attr);
ctx.enable_vertex_attrib_array(point_highlight_attr);
ctx.enable_vertex_attrib_array(point_selection_attr);
// write the points in world coordinates
let asm_to_world_sp = asm_to_world.rows(0, SPACE_DIM);
let point_positions = DMatrix::from_columns(
&scene.points.representations.into_iter().map(
|rep| &asm_to_world_sp * rep
).collect::<Vec<_>>().as_slice()
).cast::<f32>();
// load the point positions and colors into new buffers and
// bind them to the corresponding attributes in the vertex
// shader
bind_new_buffer_to_attribute(
&ctx, point_position_attr,
SPACE_DIM as i32, point_positions.as_slice(),
);
bind_new_buffer_to_attribute(
&ctx, point_color_attr,
(COLOR_SIZE + 1) as i32,
scene.points.colors_with_opacity.concat().as_slice());
bind_new_buffer_to_attribute(
&ctx, point_highlight_attr,
1i32, scene.points.highlights.as_slice(),
);
bind_new_buffer_to_attribute(
&ctx, point_selection_attr,
1i32, scene.points.selections.as_slice(),
);
// draw the scene
ctx.draw_arrays(
WebGl2RenderingContext::POINTS,
0,
point_positions.ncols() as i32,
);
// disable the point program's vertex attributes
ctx.disable_vertex_attrib_array(point_position_attr);
ctx.disable_vertex_attrib_array(point_color_attr);
ctx.disable_vertex_attrib_array(point_highlight_attr);
ctx.disable_vertex_attrib_array(point_selection_attr);
}
// --- update the display state ---
// update the viewpoint
assembly_to_world.set(asm_to_world);
// clear the scene change flag
scene_changed.set(
pitch_up_val != 0.0
|| pitch_down_val != 0.0
|| yaw_left_val != 0.0
|| yaw_right_val != 0.0
|| roll_cw_val != 0.0
|| roll_ccw_val != 0.0
|| zoom_in_val != 0.0
|| zoom_out_val != 0.0
|| turntable_val /* BENCHMARKING */
);
} else {
frames_since_last_sample = 0;
mean_frame_interval.set(-1.0);
}
});
start_animation_loop();
});
let set_nav_signal = move |event: &KeyboardEvent, value: f64| {
let mut navigating = true;
let shift = event.shift_key();
match event.key().as_str() {
"ArrowUp" if shift => zoom_in.set(value),
"ArrowDown" if shift => zoom_out.set(value),
"ArrowUp" => pitch_up.set(value),
"ArrowDown" => pitch_down.set(value),
"ArrowRight" if shift => roll_cw.set(value),
"ArrowLeft" if shift => roll_ccw.set(value),
"ArrowRight" => yaw_right.set(value),
"ArrowLeft" => yaw_left.set(value),
_ => navigating = false,
};
if navigating {
scene_changed.set(true);
event.prevent_default();
}
};
let set_manip_signal = move |event: &KeyboardEvent, value: f64| {
let mut manipulating = true;
let shift = event.shift_key();
match event.key().as_str() {
"d" | "D" => translate_pos_x.set(value),
"a" | "A" => translate_neg_x.set(value),
"w" | "W" if shift => translate_neg_z.set(value),
"s" | "S" if shift => translate_pos_z.set(value),
"w" | "W" => translate_pos_y.set(value),
"s" | "S" => translate_neg_y.set(value),
"]" | "}" => shrink_neg.set(value),
"[" | "{" => shrink_pos.set(value),
_ => manipulating = false,
};
if manipulating {
event.prevent_default();
}
};
view! {
/* TO DO */
// switch back to integer-valued parameters when that becomes possible
// again
canvas(
ref = display,
id = "display",
width = "600",
height = "600",
tabindex = "0",
on:keydown = move |event: KeyboardEvent| {
if event.key() == "Shift" {
// swap navigation inputs
roll_cw.set(yaw_right.get());
roll_ccw.set(yaw_left.get());
zoom_in.set(pitch_up.get());
zoom_out.set(pitch_down.get());
yaw_right.set(0.0);
yaw_left.set(0.0);
pitch_up.set(0.0);
pitch_down.set(0.0);
// swap manipulation inputs
translate_pos_z.set(translate_neg_y.get());
translate_neg_z.set(translate_pos_y.get());
translate_pos_y.set(0.0);
translate_neg_y.set(0.0);
} else {
if event.key() == "Enter" { /* BENCHMARKING */
turntable.set_fn(|turn| !turn);
scene_changed.set(true);
}
set_nav_signal(&event, 1.0);
set_manip_signal(&event, 1.0);
}
},
on:keyup = move |event: KeyboardEvent| {
if event.key() == "Shift" {
// swap navigation inputs
yaw_right.set(roll_cw.get());
yaw_left.set(roll_ccw.get());
pitch_up.set(zoom_in.get());
pitch_down.set(zoom_out.get());
roll_cw.set(0.0);
roll_ccw.set(0.0);
zoom_in.set(0.0);
zoom_out.set(0.0);
// swap manipulation inputs
translate_pos_y.set(translate_neg_z.get());
translate_neg_y.set(translate_pos_z.get());
translate_pos_z.set(0.0);
translate_neg_z.set(0.0);
} else {
set_nav_signal(&event, 0.0);
set_manip_signal(&event, 0.0);
}
},
on:blur = move |_| {
pitch_up.set(0.0);
pitch_down.set(0.0);
yaw_right.set(0.0);
yaw_left.set(0.0);
roll_ccw.set(0.0);
roll_cw.set(0.0);
},
on:click = move |event: MouseEvent| {
// find the nearest element along the pointer direction
let (dir, pixel_size) = event_dir(&event);
console::log_1(&JsValue::from(dir.to_string()));
let mut clicked: Option<(Rc<dyn Element>, f64)> = None;
let tangible_elts = state.assembly.elements
.get_clone_untracked()
.into_iter()
.filter(|elt| !elt.ghost().get());
for elt in tangible_elts {
let cast = assembly_to_world.with(
|asm_to_world| elt.cast(dir, asm_to_world, pixel_size));
match cast {
Some(depth) => match clicked {
Some((_, best_depth)) => {
if depth < best_depth {
clicked = Some((elt, depth))
}
},
None => clicked = Some((elt, depth)),
},
None => (),
};
}
// if we clicked something, select it
match clicked {
Some((elt, _)) => state.select(&elt, event.shift_key()),
None => state.selection.update(|sel| sel.clear()),
};
},
)
}
}

View file

@ -1,285 +0,0 @@
use itertools::Itertools;
use std::rc::Rc;
use sycamore::prelude::*;
use web_sys::{KeyboardEvent, MouseEvent, wasm_bindgen::JsCast};
use crate::{
AppState,
assembly::{
Element,
HalfCurvatureRegulator,
InversiveDistanceRegulator,
PointCoordinateRegulator,
Regulator,
},
specified::SpecifiedValue
};
// an editable view of a regulator
#[component(inline_props)]
fn RegulatorInput(regulator: Rc<dyn Regulator>) -> View {
// get the regulator's measurement and set point signals
let measurement = regulator.measurement();
let set_point = regulator.set_point();
// the `valid` signal tracks whether the last entered value is a valid set
// point specification
let valid = create_signal(true);
// the `value` signal holds the current set point specification
let value = create_signal(
set_point.with_untracked(|set_pt| set_pt.spec.clone())
);
// this `reset_value` closure resets the input value to the regulator's set
// point specification
let reset_value = move || {
batch(|| {
valid.set(true);
value.set(set_point.with(|set_pt| set_pt.spec.clone()));
})
};
// reset the input value whenever the regulator's set point specification
// is updated
create_effect(reset_value);
view! {
input(
r#type = "text",
class = move || {
if valid.get() {
set_point.with(|set_pt| {
if set_pt.is_present() {
"regulator-input constraint"
} else {
"regulator-input"
}
})
} else {
"regulator-input invalid"
}
},
placeholder = measurement.with(|result| result.to_string()),
bind:value = value,
on:change = move |_| {
let sv = SpecifiedValue::try_from(value.get_clone_untracked());
valid.set(
match sv {
Ok(set_pt) => {
set_point.set(set_pt);
true
},
Err(_) => false,
}
)
},
on:keydown = {
move |event: KeyboardEvent| {
match event.key().as_str() {
"Escape" => reset_value(),
_ => (),
}
}
},
)
}
}
pub trait OutlineItem {
fn outline_item(self: Rc<Self>, element: &Rc<dyn Element>) -> View;
}
impl OutlineItem for InversiveDistanceRegulator {
fn outline_item(self: Rc<Self>, element: &Rc<dyn Element>) -> View {
let other_subject_label = if self.subjects[0] == element.clone() {
self.subjects[1].label()
} else {
self.subjects[0].label()
}.clone();
view! {
li(class = "regulator") {
div(class = "regulator-label") { (other_subject_label) }
div(class = "regulator-type") { "Inversive distance" }
RegulatorInput(regulator = self)
div(class = "status")
}
}
}
}
impl OutlineItem for HalfCurvatureRegulator {
fn outline_item(self: Rc<Self>, _element: &Rc<dyn Element>) -> View {
view! {
li(class = "regulator") {
div(class = "regulator-label") // for spacing
div(class = "regulator-type") { "Half-curvature" }
RegulatorInput(regulator = self)
div(class = "status")
}
}
}
}
impl OutlineItem for PointCoordinateRegulator {
fn outline_item(self: Rc<Self>, _element: &Rc<dyn Element>) -> View {
let name = format!("{} coordinate", self.axis);
view! {
li(class = "regulator") {
div(class = "regulator-label") // for spacing
div(class = "regulator-type") { (name) }
RegulatorInput(regulator = self)
div(class = "status")
}
}
}
}
// a list item that shows an element in an outline view of an assembly
#[component(inline_props)]
fn ElementOutlineItem(element: Rc<dyn Element>) -> View {
let state = use_context::<AppState>();
let class = {
let element_for_class = element.clone();
state.selection.map(
move |sel|
if sel.contains(&element_for_class) { "selected" }
else { "" }
)
};
let label = element.label().clone();
let representation = element.representation().clone();
let rep_components = move || {
representation.with(
|rep| rep.iter().map(
|u| {
let u_str = format!("{:.3}", u).replace("-", "\u{2212}");
view! { div { (u_str) } }
}
).collect::<Vec<_>>()
)
};
let regulated = element.regulators().map(|regs| regs.len() > 0);
let regulator_list = element.regulators().map(
|regs| regs
.clone()
.into_iter()
.sorted_by_key(|reg| reg.subjects().len())
.collect::<Vec<_>>()
);
let details_node = create_node_ref();
view! {
li {
details(ref = details_node) {
summary(
class = class.get(),
on:keydown = {
let element_for_handler = element.clone();
move |event: KeyboardEvent| {
match event.key().as_str() {
"Enter" => {
state.select(
&element_for_handler,
event.shift_key(),
);
event.prevent_default();
},
"ArrowRight" if regulated.get() => {
let _ = details_node
.get()
.unchecked_into::<web_sys::Element>()
.set_attribute("open", "");
},
"ArrowLeft" => {
let _ = details_node
.get()
.unchecked_into::<web_sys::Element>()
.remove_attribute("open");
},
_ => (),
}
}
}
) {
div(
class = "element-switch",
on:click = |event: MouseEvent| event.stop_propagation()
)
div(
class = "element",
on:click = {
let state_for_handler = state.clone();
let element_for_handler = element.clone();
move |event: MouseEvent| {
state_for_handler.select(
&element_for_handler, event.shift_key());
event.stop_propagation();
event.prevent_default();
}
}
) {
div(class = "element-label") { (label) }
div(class = "element-representation") {
(rep_components)
}
input(
r#type = "checkbox",
bind:checked = element.ghost(),
on:click
= |event: MouseEvent| event.stop_propagation()
)
}
}
ul(class = "regulators") {
Keyed(
list = regulator_list,
view = move |reg| reg.outline_item(&element),
key = |reg| reg.serial()
)
}
}
}
}
}
// a component that lists the elements of the current assembly, showing each
// element's regulators in a collapsible sub-list. its implementation is based
// on Kate Morley's HTML + CSS tree views:
//
// https://iamkate.com/code/tree-views/
//
#[component]
pub fn Outline() -> View {
let state = use_context::<AppState>();
// list the elements alphabetically by ID
/* TO DO */
// this code is designed to generalize easily to other sort keys. if we only
// ever wanted to sort by ID, we could do that more simply using the
// `elements_by_id` index
let element_list = state.assembly.elements.map(
|elts| elts
.clone()
.into_iter()
.sorted_by_key(|elt| elt.id().clone())
.collect::<Vec<_>>()
);
view! {
ul(
id = "outline",
on:click = {
let state = use_context::<AppState>();
move |_| state.selection.update(|sel| sel.clear())
}
) {
Keyed(
list = element_list,
view = |elt| view! {
ElementOutlineItem(element = elt)
},
key = |elt| elt.serial()
)
}
}
}

View file

@ -1,19 +0,0 @@
#version 300 es
precision highp float;
in vec4 point_color;
in float point_highlight;
in float total_radius;
out vec4 outColor;
void main() {
float r = total_radius * length(2.*gl_PointCoord - vec2(1.));
const float POINT_RADIUS = 4.;
float border = smoothstep(POINT_RADIUS - 1., POINT_RADIUS, r);
float disk = 1. - smoothstep(total_radius - 1., total_radius, r);
vec4 color = mix(point_color, vec4(1.), border * point_highlight);
outColor = vec4(vec3(1.), disk) * color;
}

View file

@ -1,24 +0,0 @@
#version 300 es
in vec4 position;
in vec4 color;
in float highlight;
in float selected;
out vec4 point_color;
out float point_highlight;
out float total_radius;
// camera
const float focal_slope = 0.3;
void main() {
total_radius = 5. + 0.5*selected;
float depth = -focal_slope * position.z;
gl_Position = vec4(position.xy / depth, 0., 1.);
gl_PointSize = 2.*total_radius;
point_color = color;
point_highlight = highlight;
}

File diff suppressed because it is too large Load diff

464
app-proto/src/display.rs Normal file
View file

@ -0,0 +1,464 @@
use core::array;
use nalgebra::{DMatrix, Rotation3, Vector3};
use sycamore::{prelude::*, motion::create_raf};
use web_sys::{
console,
window,
KeyboardEvent,
WebGl2RenderingContext,
WebGlProgram,
WebGlShader,
WebGlUniformLocation,
wasm_bindgen::{JsCast, JsValue}
};
use crate::AppState;
fn compile_shader(
context: &WebGl2RenderingContext,
shader_type: u32,
source: &str,
) -> WebGlShader {
let shader = context.create_shader(shader_type).unwrap();
context.shader_source(&shader, source);
context.compile_shader(&shader);
shader
}
fn get_uniform_array_locations<const N: usize>(
context: &WebGl2RenderingContext,
program: &WebGlProgram,
var_name: &str,
member_name_opt: Option<&str>
) -> [Option<WebGlUniformLocation>; N] {
array::from_fn(|n| {
let name = match member_name_opt {
Some(member_name) => format!("{var_name}[{n}].{member_name}"),
None => format!("{var_name}[{n}]")
};
context.get_uniform_location(&program, name.as_str())
})
}
// load the given data into the vertex input of the given name
fn bind_vertex_attrib(
context: &WebGl2RenderingContext,
index: u32,
size: i32,
data: &[f32]
) {
// create a data buffer and bind it to ARRAY_BUFFER
let buffer = context.create_buffer().unwrap();
context.bind_buffer(WebGl2RenderingContext::ARRAY_BUFFER, Some(&buffer));
// load the given data into the buffer. the function `Float32Array::view`
// creates a raw view into our module's `WebAssembly.Memory` buffer.
// allocating more memory will change the buffer, invalidating the view.
// that means we have to make sure we don't allocate any memory until the
// view is dropped
unsafe {
context.buffer_data_with_array_buffer_view(
WebGl2RenderingContext::ARRAY_BUFFER,
&js_sys::Float32Array::view(&data),
WebGl2RenderingContext::STATIC_DRAW,
);
}
// allow the target attribute to be used
context.enable_vertex_attrib_array(index);
// take whatever's bound to ARRAY_BUFFER---here, the data buffer created
// above---and bind it to the target attribute
//
// https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext/vertexAttribPointer
//
context.vertex_attrib_pointer_with_i32(
index,
size,
WebGl2RenderingContext::FLOAT,
false, // don't normalize
0, // zero stride
0, // zero offset
);
}
#[component]
pub fn Display() -> View {
let state = use_context::<AppState>();
// canvas
let display = create_node_ref();
// navigation
let pitch_up = create_signal(0.0);
let pitch_down = create_signal(0.0);
let yaw_right = create_signal(0.0);
let yaw_left = create_signal(0.0);
let roll_ccw = create_signal(0.0);
let roll_cw = create_signal(0.0);
let zoom_in = create_signal(0.0);
let zoom_out = create_signal(0.0);
let turntable = create_signal(false); /* BENCHMARKING */
// change listener
let scene_changed = create_signal(true);
create_effect(move || {
state.assembly.elements.with(|elts| {
for (_, elt) in elts {
elt.representation.track();
}
});
state.selection.track();
scene_changed.set(true);
});
/* INSTRUMENTS */
const SAMPLE_PERIOD: i32 = 60;
let mut last_sample_time = 0.0;
let mut frames_since_last_sample = 0;
let mean_frame_interval = create_signal(0.0);
on_mount(move || {
// timing
let mut last_time = 0.0;
// viewpoint
const ROT_SPEED: f64 = 0.4; // in radians per second
const ZOOM_SPEED: f64 = 0.15; // multiplicative rate per second
const TURNTABLE_SPEED: f64 = 0.1; /* BENCHMARKING */
let mut orientation = DMatrix::<f64>::identity(5, 5);
let mut rotation = DMatrix::<f64>::identity(5, 5);
let mut location_z: f64 = 5.0;
// display parameters
const OPACITY: f32 = 0.5; /* SCAFFOLDING */
const HIGHLIGHT: f32 = 0.2; /* SCAFFOLDING */
const LAYER_THRESHOLD: i32 = 0; /* DEBUG */
const DEBUG_MODE: i32 = 0; /* DEBUG */
/* INSTRUMENTS */
let performance = window().unwrap().performance().unwrap();
// get the display canvas
let canvas = display.get().unchecked_into::<web_sys::HtmlCanvasElement>();
let ctx = canvas
.get_context("webgl2")
.unwrap()
.unwrap()
.dyn_into::<WebGl2RenderingContext>()
.unwrap();
// compile and attach the vertex and fragment shaders
let vertex_shader = compile_shader(
&ctx,
WebGl2RenderingContext::VERTEX_SHADER,
include_str!("identity.vert"),
);
let fragment_shader = compile_shader(
&ctx,
WebGl2RenderingContext::FRAGMENT_SHADER,
include_str!("inversive.frag"),
);
let program = ctx.create_program().unwrap();
ctx.attach_shader(&program, &vertex_shader);
ctx.attach_shader(&program, &fragment_shader);
ctx.link_program(&program);
let link_status = ctx
.get_program_parameter(&program, WebGl2RenderingContext::LINK_STATUS)
.as_bool()
.unwrap();
let link_msg = if link_status {
"Linked successfully"
} else {
"Linking failed"
};
console::log_1(&JsValue::from(link_msg));
ctx.use_program(Some(&program));
/* DEBUG */
// print the maximum number of vectors that can be passed as
// uniforms to a fragment shader. the OpenGL ES 3.0 standard
// requires this maximum to be at least 224, as discussed in the
// documentation of the GL_MAX_FRAGMENT_UNIFORM_VECTORS parameter
// here:
//
// https://registry.khronos.org/OpenGL-Refpages/es3.0/html/glGet.xhtml
//
// there are also other size limits. for example, on Aaron's
// machine, the the length of a float or genType array seems to be
// capped at 1024 elements
console::log_2(
&ctx.get_parameter(WebGl2RenderingContext::MAX_FRAGMENT_UNIFORM_VECTORS).unwrap(),
&JsValue::from("uniform vectors available")
);
// find indices of vertex attributes and uniforms
const SPHERE_MAX: usize = 200;
let position_index = ctx.get_attrib_location(&program, "position") as u32;
let sphere_cnt_loc = ctx.get_uniform_location(&program, "sphere_cnt");
let sphere_sp_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &program, "sphere_list", Some("sp")
);
let sphere_lt_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &program, "sphere_list", Some("lt")
);
let color_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &program, "color_list", None
);
let highlight_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &program, "highlight_list", None
);
let resolution_loc = ctx.get_uniform_location(&program, "resolution");
let shortdim_loc = ctx.get_uniform_location(&program, "shortdim");
let opacity_loc = ctx.get_uniform_location(&program, "opacity");
let layer_threshold_loc = ctx.get_uniform_location(&program, "layer_threshold");
let debug_mode_loc = ctx.get_uniform_location(&program, "debug_mode");
// create a vertex array and bind it to the graphics context
let vertex_array = ctx.create_vertex_array().unwrap();
ctx.bind_vertex_array(Some(&vertex_array));
// set the vertex positions
const VERTEX_CNT: usize = 6;
let positions: [f32; 3*VERTEX_CNT] = [
// northwest triangle
-1.0, -1.0, 0.0,
-1.0, 1.0, 0.0,
1.0, 1.0, 0.0,
// southeast triangle
-1.0, -1.0, 0.0,
1.0, 1.0, 0.0,
1.0, -1.0, 0.0
];
bind_vertex_attrib(&ctx, position_index, 3, &positions);
// set up a repainting routine
let (_, start_animation_loop, _) = create_raf(move || {
// get the time step
let time = performance.now();
let time_step = 0.001*(time - last_time);
last_time = time;
// get the navigation state
let pitch_up_val = pitch_up.get();
let pitch_down_val = pitch_down.get();
let yaw_right_val = yaw_right.get();
let yaw_left_val = yaw_left.get();
let roll_ccw_val = roll_ccw.get();
let roll_cw_val = roll_cw.get();
let zoom_in_val = zoom_in.get();
let zoom_out_val = zoom_out.get();
let turntable_val = turntable.get(); /* BENCHMARKING */
// update the assembly's orientation
let ang_vel = {
let pitch = pitch_up_val - pitch_down_val;
let yaw = yaw_right_val - yaw_left_val;
let roll = roll_ccw_val - roll_cw_val;
if pitch != 0.0 || yaw != 0.0 || roll != 0.0 {
ROT_SPEED * Vector3::new(-pitch, yaw, roll).normalize()
} else {
Vector3::zeros()
}
} /* BENCHMARKING */ + if turntable_val {
Vector3::new(0.0, TURNTABLE_SPEED, 0.0)
} else {
Vector3::zeros()
};
let mut rotation_sp = rotation.fixed_view_mut::<3, 3>(0, 0);
rotation_sp.copy_from(
Rotation3::from_scaled_axis(time_step * ang_vel).matrix()
);
orientation = &rotation * &orientation;
// update the assembly's location
let zoom = zoom_out_val - zoom_in_val;
location_z *= (time_step * ZOOM_SPEED * zoom).exp();
if scene_changed.get() {
/* INSTRUMENTS */
// measure mean frame interval
frames_since_last_sample += 1;
if frames_since_last_sample >= SAMPLE_PERIOD {
mean_frame_interval.set((time - last_sample_time) / (SAMPLE_PERIOD as f64));
last_sample_time = time;
frames_since_last_sample = 0;
}
// find the map from assembly space to world space
let location = {
let u = -location_z;
DMatrix::from_column_slice(5, 5, &[
1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, u,
0.0, 0.0, 2.0*u, 1.0, u*u,
0.0, 0.0, 0.0, 0.0, 1.0
])
};
let assembly_to_world = &location * &orientation;
// get the assembly
let (
elt_cnt,
reps_world,
colors,
highlights
) = state.assembly.elements.with(|elts| {
(
// number of elements
elts.len() as i32,
// representation vectors in world coordinates
elts.iter().map(
|(_, elt)| elt.representation.with(|rep| &assembly_to_world * rep)
).collect::<Vec<_>>(),
// colors
elts.iter().map(|(key, elt)| {
if state.selection.with(|sel| sel.contains(&key)) {
elt.color.map(|ch| 0.2 + 0.8*ch)
} else {
elt.color
}
}).collect::<Vec<_>>(),
// highlight levels
elts.iter().map(|(key, _)| {
if state.selection.with(|sel| sel.contains(&key)) {
1.0_f32
} else {
HIGHLIGHT
}
}).collect::<Vec<_>>()
)
});
// set the resolution
let width = canvas.width() as f32;
let height = canvas.height() as f32;
ctx.uniform2f(resolution_loc.as_ref(), width, height);
ctx.uniform1f(shortdim_loc.as_ref(), width.min(height));
// pass the assembly
ctx.uniform1i(sphere_cnt_loc.as_ref(), elt_cnt);
for n in 0..reps_world.len() {
let v = &reps_world[n];
ctx.uniform3f(
sphere_sp_locs[n].as_ref(),
v[0] as f32, v[1] as f32, v[2] as f32
);
ctx.uniform2f(
sphere_lt_locs[n].as_ref(),
v[3] as f32, v[4] as f32
);
ctx.uniform3fv_with_f32_array(
color_locs[n].as_ref(),
&colors[n]
);
ctx.uniform1f(
highlight_locs[n].as_ref(),
highlights[n]
);
}
// pass the display parameters
ctx.uniform1f(opacity_loc.as_ref(), OPACITY);
ctx.uniform1i(layer_threshold_loc.as_ref(), LAYER_THRESHOLD);
ctx.uniform1i(debug_mode_loc.as_ref(), DEBUG_MODE);
// draw the scene
ctx.draw_arrays(WebGl2RenderingContext::TRIANGLES, 0, VERTEX_CNT as i32);
// clear the scene change flag
scene_changed.set(
pitch_up_val != 0.0
|| pitch_down_val != 0.0
|| yaw_left_val != 0.0
|| yaw_right_val != 0.0
|| roll_cw_val != 0.0
|| roll_ccw_val != 0.0
|| zoom_in_val != 0.0
|| zoom_out_val != 0.0
|| turntable_val /* BENCHMARKING */
);
} else {
frames_since_last_sample = 0;
mean_frame_interval.set(-1.0);
}
});
start_animation_loop();
});
let set_nav_signal = move |event: KeyboardEvent, value: f64| {
let mut navigating = true;
let shift = event.shift_key();
match event.key().as_str() {
"ArrowUp" if shift => zoom_in.set(value),
"ArrowDown" if shift => zoom_out.set(value),
"ArrowUp" => pitch_up.set(value),
"ArrowDown" => pitch_down.set(value),
"ArrowRight" if shift => roll_cw.set(value),
"ArrowLeft" if shift => roll_ccw.set(value),
"ArrowRight" => yaw_right.set(value),
"ArrowLeft" => yaw_left.set(value),
_ => navigating = false
};
if navigating {
scene_changed.set(true);
event.prevent_default();
}
};
view! {
/* TO DO */
// switch back to integer-valued parameters when that becomes possible
// again
canvas(
ref=display,
width="600",
height="600",
tabindex="0",
on:keydown=move |event: KeyboardEvent| {
if event.key() == "Shift" {
roll_cw.set(yaw_right.get());
roll_ccw.set(yaw_left.get());
zoom_in.set(pitch_up.get());
zoom_out.set(pitch_down.get());
yaw_right.set(0.0);
yaw_left.set(0.0);
pitch_up.set(0.0);
pitch_down.set(0.0);
} else {
if event.key() == "Enter" { /* BENCHMARKING */
turntable.set_fn(|turn| !turn);
scene_changed.set(true);
}
set_nav_signal(event, 1.0);
}
},
on:keyup=move |event: KeyboardEvent| {
if event.key() == "Shift" {
yaw_right.set(roll_cw.get());
yaw_left.set(roll_ccw.get());
pitch_up.set(zoom_in.get());
pitch_down.set(zoom_out.get());
roll_cw.set(0.0);
roll_ccw.set(0.0);
zoom_in.set(0.0);
zoom_out.set(0.0);
} else {
set_nav_signal(event, 0.0);
}
},
on:blur=move |_| {
pitch_up.set(0.0);
pitch_down.set(0.0);
yaw_right.set(0.0);
yaw_left.set(0.0);
roll_ccw.set(0.0);
roll_cw.set(0.0);
}
)
}
}

File diff suppressed because it is too large Load diff

View file

@ -17,7 +17,7 @@ struct vecInv {
const int SPHERE_MAX = 200; const int SPHERE_MAX = 200;
uniform int sphere_cnt; uniform int sphere_cnt;
uniform vecInv sphere_list[SPHERE_MAX]; uniform vecInv sphere_list[SPHERE_MAX];
uniform vec4 color_list[SPHERE_MAX]; uniform vec3 color_list[SPHERE_MAX];
uniform float highlight_list[SPHERE_MAX]; uniform float highlight_list[SPHERE_MAX];
// view // view
@ -25,6 +25,7 @@ uniform vec2 resolution;
uniform float shortdim; uniform float shortdim;
// controls // controls
uniform float opacity;
uniform int layer_threshold; uniform int layer_threshold;
uniform bool debug_mode; uniform bool debug_mode;
@ -68,7 +69,7 @@ struct Fragment {
vec4 color; vec4 color;
}; };
Fragment sphere_shading(vecInv v, vec3 pt, vec4 base_color) { Fragment sphere_shading(vecInv v, vec3 pt, vec3 base_color) {
// the expression for normal needs to be checked. it's supposed to give the // the expression for normal needs to be checked. it's supposed to give the
// negative gradient of the lorentz product between the impact point vector // negative gradient of the lorentz product between the impact point vector
// and the sphere vector with respect to the coordinates of the impact // and the sphere vector with respect to the coordinates of the impact
@ -78,7 +79,7 @@ Fragment sphere_shading(vecInv v, vec3 pt, vec4 base_color) {
float incidence = dot(normal, light_dir); float incidence = dot(normal, light_dir);
float illum = mix(0.4, 1.0, max(incidence, 0.0)); float illum = mix(0.4, 1.0, max(incidence, 0.0));
return Fragment(pt, normal, vec4(illum * base_color.rgb, base_color.a)); return Fragment(pt, normal, vec4(illum * base_color, opacity));
} }
float intersection_dist(Fragment a, Fragment b) { float intersection_dist(Fragment a, Fragment b) {
@ -175,9 +176,8 @@ void main() {
if (debug_mode) { if (debug_mode) {
// at the bottom of the screen, show the color scale instead of the // at the bottom of the screen, show the color scale instead of the
// layer count // layer count
if (gl_FragCoord.y < 10.) { if (gl_FragCoord.y < 10.) layer_cnt = int(16. * gl_FragCoord.x / resolution.x);
layer_cnt = int(16. * gl_FragCoord.x / resolution.x);
}
// convert number to color // convert number to color
ivec3 bits = layer_cnt / ivec3(1, 2, 4); ivec3 bits = layer_cnt / ivec3(1, 2, 4);
vec3 color = mod(vec3(bits), 2.); vec3 color = mod(vec3(bits), 2.);
@ -192,11 +192,10 @@ void main() {
vec3 color = vec3(0.); vec3 color = vec3(0.);
int layer = layer_cnt - 1; int layer = layer_cnt - 1;
TaggedDepth hit = top_hits[layer]; TaggedDepth hit = top_hits[layer];
vec4 sphere_color = color_list[hit.id];
Fragment frag_next = sphere_shading( Fragment frag_next = sphere_shading(
sphere_list[hit.id], sphere_list[hit.id],
hit.depth * dir, hit.depth * dir,
vec4(hit.dimming * sphere_color.rgb, sphere_color.a) hit.dimming * color_list[hit.id]
); );
float highlight_next = highlight_list[hit.id]; float highlight_next = highlight_list[hit.id];
--layer; --layer;
@ -207,28 +206,24 @@ void main() {
// shade the next fragment // shade the next fragment
hit = top_hits[layer]; hit = top_hits[layer];
sphere_color = color_list[hit.id];
frag_next = sphere_shading( frag_next = sphere_shading(
sphere_list[hit.id], sphere_list[hit.id],
hit.depth * dir, hit.depth * dir,
vec4(hit.dimming * sphere_color.rgb, sphere_color.a) hit.dimming * color_list[hit.id]
); );
highlight_next = highlight_list[hit.id]; highlight_next = highlight_list[hit.id];
// highlight intersections // highlight intersections
float ixn_dist = intersection_dist(frag, frag_next); float ixn_dist = intersection_dist(frag, frag_next);
float max_highlight = max(highlight, highlight_next); float max_highlight = max(highlight, highlight_next);
float ixn_highlight = 0.5 * max_highlight * (1. - smoothstep( float ixn_highlight = 0.5 * max_highlight * (1. - smoothstep(2./3.*ixn_threshold, 1.5*ixn_threshold, ixn_dist));
2./3.*ixn_threshold, 1.5*ixn_threshold, ixn_dist));
frag.color = mix(frag.color, vec4(1.), ixn_highlight); frag.color = mix(frag.color, vec4(1.), ixn_highlight);
frag_next.color = mix(frag_next.color, vec4(1.), ixn_highlight); frag_next.color = mix(frag_next.color, vec4(1.), ixn_highlight);
// highlight cusps // highlight cusps
float cusp_cos = abs(dot(dir, frag.normal)); float cusp_cos = abs(dot(dir, frag.normal));
float cusp_threshold float cusp_threshold = 2.*sqrt(ixn_threshold * sphere_list[hit.id].lt.s);
= 2.*sqrt( ixn_threshold * sphere_list[hit.id].lt.s); float cusp_highlight = highlight * (1. - smoothstep(2./3.*cusp_threshold, 1.5*cusp_threshold, cusp_cos));
float cusp_highlight = highlight * (1. - smoothstep(
2./3.*cusp_threshold, 1.5*cusp_threshold, cusp_cos));
frag.color = mix(frag.color, vec4(1.), cusp_highlight); frag.color = mix(frag.color, vec4(1.), cusp_highlight);
// composite the current fragment // composite the current fragment

View file

@ -1 +0,0 @@
pub mod engine;

View file

@ -1,67 +1,40 @@
mod add_remove;
mod assembly; mod assembly;
mod components; mod display;
mod engine; mod engine;
mod specified; mod outline;
#[cfg(test)] use rustc_hash::FxHashSet;
mod tests;
use std::{collections::BTreeSet, rc::Rc};
use sycamore::prelude::*; use sycamore::prelude::*;
use assembly::{Assembly, Element}; use add_remove::AddRemove;
use components::{ use assembly::{Assembly, ElementKey};
add_remove::AddRemove, use display::Display;
diagnostics::Diagnostics, use outline::Outline;
display::Display,
outline::Outline,
};
#[derive(Clone)] #[derive(Clone)]
struct AppState { struct AppState {
assembly: Assembly, assembly: Assembly,
selection: Signal<BTreeSet<Rc<dyn Element>>>, selection: Signal<FxHashSet<ElementKey>>
} }
impl AppState { impl AppState {
fn new() -> Self { fn new() -> AppState {
Self { AppState {
assembly: Assembly::new(), assembly: Assembly::new(),
selection: create_signal(BTreeSet::default()), selection: create_signal(FxHashSet::default())
}
}
// in single-selection mode, select the given element. in multiple-selection
// mode, toggle whether the given element is selected
fn select(&self, element: &Rc<dyn Element>, multi: bool) {
if multi {
self.selection.update(|sel| {
if !sel.remove(element) {
sel.insert(element.clone());
}
});
} else {
self.selection.update(|sel| {
sel.clear();
sel.insert(element.clone());
});
} }
} }
} }
fn main() { fn main() {
// set the console error panic hook
#[cfg(feature = "console_error_panic_hook")]
console_error_panic_hook::set_once();
sycamore::render(|| { sycamore::render(|| {
provide_context(AppState::new()); provide_context(AppState::new());
view! { view! {
div(id = "sidebar") { div(id="sidebar") {
AddRemove {} AddRemove {}
Outline {} Outline {}
Diagnostics {}
} }
Display {} Display {}
} }

207
app-proto/src/outline.rs Normal file
View file

@ -0,0 +1,207 @@
use itertools::Itertools;
use sycamore::prelude::*;
use web_sys::{
Event,
HtmlInputElement,
KeyboardEvent,
MouseEvent,
wasm_bindgen::JsCast
};
use crate::{AppState, assembly, assembly::{Constraint, ConstraintKey, ElementKey}};
// an editable view of the Lorentz product representing a constraint
#[component(inline_props)]
fn LorentzProductInput(constraint: Constraint) -> View {
view! {
input(
r#type="text",
bind:value=constraint.lorentz_prod_text,
on:change=move |event: Event| {
let target: HtmlInputElement = event.target().unwrap().unchecked_into();
match target.value().parse::<f64>() {
Ok(lorentz_prod) => batch(|| {
constraint.lorentz_prod.set(lorentz_prod);
constraint.lorentz_prod_valid.set(true);
}),
Err(_) => constraint.lorentz_prod_valid.set(false)
};
}
)
}
}
// a list item that shows a constraint in an outline view of an element
#[component(inline_props)]
fn ConstraintOutlineItem(constraint_key: ConstraintKey, element_key: ElementKey) -> View {
let state = use_context::<AppState>();
let assembly = &state.assembly;
let constraint = assembly.constraints.with(|csts| csts[constraint_key].clone());
let other_subject = if constraint.subjects.0 == element_key {
constraint.subjects.1
} else {
constraint.subjects.0
};
let other_subject_label = assembly.elements.with(|elts| elts[other_subject].label.clone());
let class = constraint.lorentz_prod_valid.map(
|&lorentz_prod_valid| if lorentz_prod_valid { "constraint" } else { "constraint invalid" }
);
view! {
li(class=class.get()) {
input(r#type="checkbox", bind:checked=constraint.active)
div(class="constraint-label") { (other_subject_label) }
LorentzProductInput(constraint=constraint)
div(class="status")
}
}
}
// a list item that shows an element in an outline view of an assembly
#[component(inline_props)]
fn ElementOutlineItem(key: ElementKey, element: assembly::Element) -> View {
let state = use_context::<AppState>();
let class = state.selection.map(
move |sel| if sel.contains(&key) { "selected" } else { "" }
);
let label = element.label.clone();
let rep_components = element.representation.map(
|rep| rep.iter().map(
|u| format!("{:.3}", u).replace("-", "\u{2212}")
).collect()
);
let constrained = element.constraints.map(|csts| csts.len() > 0);
let constraint_list = element.constraints.map(
|csts| csts.clone().into_iter().collect()
);
let details_node = create_node_ref();
view! {
li {
details(ref=details_node) {
summary(
class=class.get(),
on:keydown={
move |event: KeyboardEvent| {
match event.key().as_str() {
"Enter" => {
if event.shift_key() {
state.selection.update(|sel| {
if !sel.remove(&key) {
sel.insert(key);
}
});
} else {
state.selection.update(|sel| {
sel.clear();
sel.insert(key);
});
}
event.prevent_default();
},
"ArrowRight" if constrained.get() => {
let _ = details_node
.get()
.unchecked_into::<web_sys::Element>()
.set_attribute("open", "");
},
"ArrowLeft" => {
let _ = details_node
.get()
.unchecked_into::<web_sys::Element>()
.remove_attribute("open");
},
_ => ()
}
}
}
) {
div(
class="element-switch",
on:click=|event: MouseEvent| event.stop_propagation()
)
div(
class="element",
on:click={
move |event: MouseEvent| {
if event.shift_key() {
state.selection.update(|sel| {
if !sel.remove(&key) {
sel.insert(key);
}
});
} else {
state.selection.update(|sel| {
sel.clear();
sel.insert(key);
});
}
event.stop_propagation();
event.prevent_default();
}
}
) {
div(class="element-label") { (label) }
div(class="element-representation") {
Indexed(
list=rep_components,
view=|coord_str| view! {
div { (coord_str) }
}
)
}
div(class="status")
}
}
ul(class="constraints") {
Keyed(
list=constraint_list,
view=move |cst_key| view! {
ConstraintOutlineItem(
constraint_key=cst_key,
element_key=key
)
},
key=|cst_key| cst_key.clone()
)
}
}
}
}
}
// a component that lists the elements of the current assembly, showing the
// constraints on each element as a collapsible sub-list. its implementation
// is based on Kate Morley's HTML + CSS tree views:
//
// https://iamkate.com/code/tree-views/
//
#[component]
pub fn Outline() -> View {
let state = use_context::<AppState>();
// list the elements alphabetically by ID
let element_list = state.assembly.elements.map(
|elts| elts
.clone()
.into_iter()
.sorted_by_key(|(_, elt)| elt.id.clone())
.collect()
);
view! {
ul(
id="outline",
on:click={
let state = use_context::<AppState>();
move |_| state.selection.update(|sel| sel.clear())
}
) {
Keyed(
list=element_list,
view=|(key, elt)| view! {
ElementOutlineItem(key=key, element=elt)
},
key=|(key, _)| key.clone()
)
}
}
}

View file

@ -1,55 +0,0 @@
use std::num::ParseFloatError;
// a real number described by a specification string. since the structure is
// read-only, we can guarantee that `spec` always specifies `value` in the
// following format
// ┌──────────────────────────────────────────────────────┬───────────┐
// │ `spec` │ `value` │
// ┝━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┿━━━━━━━━━━━┥
// │ a string that parses to the floating-point value `x` │ `Some(x)` │
// ├──────────────────────────────────────────────────────┼───────────┤
// │ the empty string │ `None` │
// └──────────────────────────────────────────────────────┴───────────┘
#[readonly::make]
pub struct SpecifiedValue {
pub spec: String,
pub value: Option<f64>,
}
impl SpecifiedValue {
pub fn from_empty_spec() -> Self {
Self { spec: String::new(), value: None }
}
pub fn is_present(&self) -> bool {
matches!(self.value, Some(_))
}
}
// a `SpecifiedValue` can be constructed from a floating-point option, which is
// given a canonical specification
impl From<Option<f64>> for SpecifiedValue {
fn from(value: Option<f64>) -> Self {
match value {
Some(x) => SpecifiedValue{ spec: x.to_string(), value },
None => SpecifiedValue::from_empty_spec(),
}
}
}
// a `SpecifiedValue` can be constructed from a specification string, formatted
// as described in the comment on the structure definition. the result is `Ok`
// if the specification is properly formatted, and `Error` if not
impl TryFrom<String> for SpecifiedValue {
type Error = ParseFloatError;
fn try_from(spec: String) -> Result<Self, Self::Error> {
if spec.is_empty() {
Ok(Self::from_empty_spec())
} else {
spec.parse::<f64>().map(
|value| Self { spec, value: Some(value) }
)
}
}
}

View file

@ -1,14 +0,0 @@
use std::process::Command;
// build and bundle the application, reporting success if there are no errors or
// warnings. to see this test fail while others succeed, try moving `index.html`
// or one of the assets that it links to
#[test]
fn trunk_build_test() {
let build_status = Command::new("trunk")
.arg("build")
.env("RUSTFLAGS", "-D warnings")
.status()
.expect("Call to Trunk failed");
assert!(build_status.success());
}

5
deploy/.gitignore vendored
View file

@ -1,5 +0,0 @@
/dyna3.zip
/dyna3/index.html
/dyna3/dyna3-*.js
/dyna3/dyna3-*.wasm
/dyna3/main-*.css

View file

@ -24,7 +24,7 @@ His final mathematical advice was reasonably encouraging, however:
"But still I would consider it all more or less doable. One should very precisely think about a doable scope. "But still I would consider it all more or less doable. One should very precisely think about a doable scope.
I think three things are essential for the math no matter what you exactly plan. I think three things are essential for the math no matter what you exactly plan.
1. Think projectively. 1. Think projectively,
Use Projective Geometry, Homogeneous Coordinates (or to a certain extent Quaternions, and Clifford Algebras, which are more or less an elegant way to merge Complex numbers with projective concepts.) Use Projective Geometry, Homogeneous Coordinates (or to a certain extent Quaternions, and Clifford Algebras, which are more or less an elegant way to merge Complex numbers with projective concepts.)
2. Consider ambient complex spaces. 2. Consider ambient complex spaces.
The true nature of the objects can only be understood if embedded into a complex ambient space. The true nature of the objects can only be understood if embedded into a complex ambient space.
@ -42,3 +42,5 @@ CindyJS uses very concrete basic objects: 2D points are represented via projecti
Lines are given by explicit coordinates as well (not sure of the internal details/exact coordinatization, or of how a "LineThrough" is represented). Lines are given by explicit coordinates as well (not sure of the internal details/exact coordinatization, or of how a "LineThrough" is represented).
Was unclear to me how the complex parametrization for preserving continuity was handled in the code, even though Jürgen harps on complex ambient spaces; where are the complex numbers? Perhaps that part of Cinderella was never re-implemented? Was unclear to me how the complex parametrization for preserving continuity was handled in the code, even though Jürgen harps on complex ambient spaces; where are the complex numbers? Perhaps that part of Cinderella was never re-implemented?

View file

@ -7,3 +7,5 @@
<body><script type="module" src="dyna3.js"></script> <body><script type="module" src="dyna3.js"></script>
</body> </body>
</html> </html>

View file

@ -1,16 +0,0 @@
# set paths. this technique for getting the script location comes from
# `mklement0` on Stack Overflow
#
# https://stackoverflow.com/a/24114056
#
TOOLS=$(dirname -- $0)
SRC="$TOOLS/../app-proto/dist"
DEST="$TOOLS/../deploy/dyna3"
# remove the old hash-named files
[ -e "$DEST"/dyna3-*.js ] && rm "$DEST"/dyna3-*.js
[ -e "$DEST"/dyna3-*.wasm ] && rm "$DEST"/dyna3-*.wasm
[ -e "$DEST"/main-*.css ] && rm "$DEST"/main-*.css
# copy the distribution
cp -r "$SRC/." "$DEST"

View file

@ -1,20 +0,0 @@
# run all Cargo examples, as described here:
#
# Karol Kuczmarski. "Add examples to your Rust libraries"
# http://xion.io/post/code/rust-examples.html
#
# you should invoke this script by calling `sh` or another interpreter, rather
# than calling `souce`, to ensure that the script can find the manifest file for
# the application prototype
# find the manifest file for the application prototype
MANIFEST="$(dirname -- $0)/../app-proto/Cargo.toml"
# set up the command that runs each example
RUN_EXAMPLE="cargo run --manifest-path $MANIFEST --example"
# run the examples
$RUN_EXAMPLE irisawa-hexlet; echo
$RUN_EXAMPLE three-spheres; echo
$RUN_EXAMPLE point-on-sphere; echo
$RUN_EXAMPLE kaleidocycle