diff --git a/app-proto/src/add_remove.rs b/app-proto/src/add_remove.rs index d737c79..fbe37c2 100644 --- a/app-proto/src/add_remove.rs +++ b/app-proto/src/add_remove.rs @@ -1,4 +1,6 @@ -use std::{f64::consts::FRAC_1_SQRT_2, rc::Rc}; +use itertools::izip; +use std::{f64::consts::{FRAC_1_SQRT_2, PI}, rc::Rc}; +use nalgebra::Vector3; use sycamore::prelude::*; use web_sys::{console, wasm_bindgen::JsValue}; @@ -6,7 +8,15 @@ use crate::{ AppState, engine, engine::DescentHistory, - assembly::{Assembly, InversiveDistanceRegulator, Point, Sphere} + assembly::{ + Assembly, + Element, + ElementColor, + InversiveDistanceRegulator, + Point, + Sphere + }, + specified::SpecifiedValue }; /* DEBUG */ @@ -67,6 +77,7 @@ fn load_gen_assemb(assembly: &Assembly) { // load an example assembly for testing. this code will be removed once we've // built a more formal test assembly system fn load_low_curv_assemb(assembly: &Assembly) { + // create the spheres let a = 0.75_f64.sqrt(); let _ = assembly.try_insert_element( Sphere::new( @@ -132,6 +143,56 @@ fn load_low_curv_assemb(assembly: &Assembly) { engine::sphere(2.0/3.0, 4.0/3.0 * a, 0.0, 1.0/3.0) ) ); + + // impose the desired tangencies and make the sides planar + let index_range = 1..=3; + let [central, assemb_plane] = ["central", "assemb_plane"].map( + |id| assembly.elements_by_id.with_untracked( + |elts_by_id| elts_by_id[id].clone() + ) + ); + let sides = index_range.clone().map( + |k| assembly.elements_by_id.with_untracked( + |elts_by_id| elts_by_id[&format!("side{k}")].clone() + ) + ); + let corners = index_range.map( + |k| assembly.elements_by_id.with_untracked( + |elts_by_id| elts_by_id[&format!("corner{k}")].clone() + ) + ); + for plane in [assemb_plane.clone()].into_iter().chain(sides.clone()) { + // fix the curvature of each plane + let curvature = plane.regulators().with_untracked( + |regs| regs.first().unwrap().clone() + ); + curvature.set_point().set(SpecifiedValue::try_from("0".to_string()).unwrap()); + } + let all_perpendicular = [central.clone()].into_iter() + .chain(sides.clone()) + .chain(corners.clone()); + for sphere in all_perpendicular { + // make each side and packed sphere perpendicular to the assembly plane + let right_angle = InversiveDistanceRegulator::new([sphere, assemb_plane.clone()]); + right_angle.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap()); + assembly.insert_regulator(Rc::new(right_angle)); + } + for sphere in sides.clone().chain(corners.clone()) { + // make each side and corner sphere tangent to the central sphere + let tangency = InversiveDistanceRegulator::new([sphere.clone(), central.clone()]); + tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap()); + assembly.insert_regulator(Rc::new(tangency)); + } + for (side_index, side) in sides.enumerate() { + // make each side tangent to the two adjacent corner spheres + for (corner_index, corner) in corners.clone().enumerate() { + if side_index != corner_index { + let tangency = InversiveDistanceRegulator::new([side.clone(), corner]); + tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap()); + assembly.insert_regulator(Rc::new(tangency)); + } + } + } } fn load_pointed_assemb(assembly: &Assembly) { @@ -177,6 +238,651 @@ fn load_pointed_assemb(assembly: &Assembly) { } } +// to finish describing the tridiminished icosahedron, set the inversive +// distance regulators as follows: +// A-A -0.25 +// A-B " +// B-C " +// C-C " +// A-C -0.25 * φ^2 = -0.6545084971874737 +fn load_tridim_icosahedron_assemb(assembly: &Assembly) { + // create the vertices + const COLOR_A: ElementColor = [1.00_f32, 0.25_f32, 0.25_f32]; + const COLOR_B: ElementColor = [0.75_f32, 0.75_f32, 0.75_f32]; + const COLOR_C: ElementColor = [0.25_f32, 0.50_f32, 1.00_f32]; + let vertices = [ + Point::new( + "a1".to_string(), + "A₁".to_string(), + COLOR_A, + engine::point(0.25, 0.75, 0.75) + ), + Point::new( + "a2".to_string(), + "A₂".to_string(), + COLOR_A, + engine::point(0.75, 0.25, 0.75) + ), + Point::new( + "a3".to_string(), + "A₃".to_string(), + COLOR_A, + engine::point(0.75, 0.75, 0.25) + ), + Point::new( + "b1".to_string(), + "B₁".to_string(), + COLOR_B, + engine::point(0.75, -0.25, -0.25) + ), + Point::new( + "b2".to_string(), + "B₂".to_string(), + COLOR_B, + engine::point(-0.25, 0.75, -0.25) + ), + Point::new( + "b3".to_string(), + "B₃".to_string(), + COLOR_B, + engine::point(-0.25, -0.25, 0.75) + ), + Point::new( + "c1".to_string(), + "C₁".to_string(), + COLOR_C, + engine::point(0.0, -1.0, -1.0) + ), + Point::new( + "c2".to_string(), + "C₂".to_string(), + COLOR_C, + engine::point(-1.0, 0.0, -1.0) + ), + Point::new( + "c3".to_string(), + "C₃".to_string(), + COLOR_C, + engine::point(-1.0, -1.0, 0.0) + ) + ]; + for vertex in vertices { + let _ = assembly.try_insert_element(vertex); + } + + // create the faces + const COLOR_FACE: ElementColor = [0.75_f32, 0.75_f32, 0.75_f32]; + let frac_1_sqrt_6 = 1.0 / 6.0_f64.sqrt(); + let frac_2_sqrt_6 = 2.0 * frac_1_sqrt_6; + let faces = [ + Sphere::new( + "face1".to_string(), + "Face 1".to_string(), + COLOR_FACE, + engine::sphere_with_offset(frac_2_sqrt_6, -frac_1_sqrt_6, -frac_1_sqrt_6, -frac_1_sqrt_6, 0.0) + ), + Sphere::new( + "face2".to_string(), + "Face 2".to_string(), + COLOR_FACE, + engine::sphere_with_offset(-frac_1_sqrt_6, frac_2_sqrt_6, -frac_1_sqrt_6, -frac_1_sqrt_6, 0.0) + ), + Sphere::new( + "face3".to_string(), + "Face 3".to_string(), + COLOR_FACE, + engine::sphere_with_offset(-frac_1_sqrt_6, -frac_1_sqrt_6, frac_2_sqrt_6, -frac_1_sqrt_6, 0.0) + ) + ]; + for face in faces { + face.ghost().set(true); + let _ = assembly.try_insert_element(face); + } + + let index_range = 1..=3; + for j in index_range.clone() { + // make each face planar + let face = assembly.elements_by_id.with_untracked( + |elts_by_id| elts_by_id[&format!("face{j}")].clone() + ); + let curvature_regulator = face.regulators().with_untracked( + |regs| regs.first().unwrap().clone() + ); + curvature_regulator.set_point().set( + SpecifiedValue::try_from("0".to_string()).unwrap() + ); + + // put each A vertex on the face it belongs to + let vertex_a = assembly.elements_by_id.with_untracked( + |elts_by_id| elts_by_id[&format!("a{j}")].clone() + ); + let incidence_a = InversiveDistanceRegulator::new([face.clone(), vertex_a.clone()]); + incidence_a.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap()); + assembly.insert_regulator(Rc::new(incidence_a)); + + // regulate the B-C vertex distances + let vertices_bc = ["b", "c"].map( + |series| assembly.elements_by_id.with_untracked( + |elts_by_id| elts_by_id[&format!("{series}{j}")].clone() + ) + ); + assembly.insert_regulator( + Rc::new(InversiveDistanceRegulator::new(vertices_bc)) + ); + + // get the pair of indices adjacent to `j` + let adjacent_indices = [j % 3 + 1, (j + 1) % 3 + 1]; + + for k in adjacent_indices.clone() { + for series in ["b", "c"] { + // put each B and C vertex on the faces it belongs to + let vertex = assembly.elements_by_id.with_untracked( + |elts_by_id| elts_by_id[&format!("{series}{k}")].clone() + ); + let incidence = InversiveDistanceRegulator::new([face.clone(), vertex.clone()]); + incidence.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap()); + assembly.insert_regulator(Rc::new(incidence)); + + // regulate the A-B and A-C vertex distances + assembly.insert_regulator( + Rc::new(InversiveDistanceRegulator::new([vertex_a.clone(), vertex])) + ); + } + } + + // regulate the A-A and C-C vertex distances + let adjacent_pairs = ["a", "c"].map( + |series| adjacent_indices.map( + |index| assembly.elements_by_id.with_untracked( + |elts_by_id| elts_by_id[&format!("{series}{index}")].clone() + ) + ) + ); + for pair in adjacent_pairs { + assembly.insert_regulator( + Rc::new(InversiveDistanceRegulator::new(pair)) + ); + } + } +} + +// to finish describing the dodecahedral circle packing, set the inversive +// distance regulators to -1. some of the regulators have already been set +fn load_dodeca_packing_assemb(assembly: &Assembly) { + // add the substrate + let _ = assembly.try_insert_element( + Sphere::new( + "substrate".to_string(), + "Substrate".to_string(), + [0.75_f32, 0.75_f32, 0.75_f32], + engine::sphere(0.0, 0.0, 0.0, 1.0) + ) + ); + let substrate = assembly.elements_by_id.with_untracked( + |elts_by_id| elts_by_id["substrate"].clone() + ); + + // fix the substrate's curvature + substrate.regulators().with_untracked( + |regs| regs.first().unwrap().clone() + ).set_point().set( + SpecifiedValue::try_from("0.5".to_string()).unwrap() + ); + + // add the circles to be packed + const COLOR_A: ElementColor = [1.00_f32, 0.25_f32, 0.00_f32]; + const COLOR_B: ElementColor = [1.00_f32, 0.00_f32, 0.25_f32]; + const COLOR_C: ElementColor = [0.25_f32, 0.00_f32, 1.00_f32]; + let phi = 0.5 + 1.25_f64.sqrt(); /* TO DO */ // replace with std::f64::consts::PHI when that gets stabilized + let phi_inv = 1.0 / phi; + let coord_scale = (phi + 2.0).sqrt(); + let face_scales = [phi_inv, (13.0 / 12.0) / coord_scale]; + let face_radii = [phi_inv, 5.0 / 12.0]; + let mut faces = Vec::>::new(); + let subscripts = ["₀", "₁"]; + for j in 0..2 { + for k in 0..2 { + let small_coord = face_scales[k] * (2.0*(j as f64) - 1.0); + let big_coord = face_scales[k] * (2.0*(k as f64) - 1.0) * phi; + + let id_num = format!("{j}{k}"); + let label_sub = format!("{}{}", subscripts[j], subscripts[k]); + + // add the A face + let id_a = format!("a{id_num}"); + let _ = assembly.try_insert_element( + Sphere::new( + id_a.clone(), + format!("A{label_sub}"), + COLOR_A, + engine::sphere(0.0, small_coord, big_coord, face_radii[k]) + ) + ); + faces.push( + assembly.elements_by_id.with_untracked( + |elts_by_id| elts_by_id[&id_a].clone() + ) + ); + + // add the B face + let id_b = format!("b{id_num}"); + let _ = assembly.try_insert_element( + Sphere::new( + id_b.clone(), + format!("B{label_sub}"), + COLOR_B, + engine::sphere(small_coord, big_coord, 0.0, face_radii[k]) + ) + ); + faces.push( + assembly.elements_by_id.with_untracked( + |elts_by_id| elts_by_id[&id_b].clone() + ) + ); + + // add the C face + let id_c = format!("c{id_num}"); + let _ = assembly.try_insert_element( + Sphere::new( + id_c.clone(), + format!("C{label_sub}"), + COLOR_C, + engine::sphere(big_coord, 0.0, small_coord, face_radii[k]) + ) + ); + faces.push( + assembly.elements_by_id.with_untracked( + |elts_by_id| elts_by_id[&id_c].clone() + ) + ); + } + } + + // make each face sphere perpendicular to the substrate + for face in faces { + let right_angle = InversiveDistanceRegulator::new([face, substrate.clone()]); + right_angle.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap()); + assembly.insert_regulator(Rc::new(right_angle)); + } + + // set up the tangencies that define the packing + for [long_edge_plane, short_edge_plane] in [["a", "b"], ["b", "c"], ["c", "a"]] { + for k in 0..2 { + let long_edge_ids = [ + format!("{long_edge_plane}{k}0"), + format!("{long_edge_plane}{k}1") + ]; + let short_edge_ids = [ + format!("{short_edge_plane}0{k}"), + format!("{short_edge_plane}1{k}") + ]; + let [long_edge, short_edge] = [long_edge_ids, short_edge_ids].map( + |edge_ids| edge_ids.map( + |id| assembly.elements_by_id.with_untracked( + |elts_by_id| elts_by_id[&id].clone() + ) + ) + ); + + // set up the short-edge tangency + let short_tangency = InversiveDistanceRegulator::new(short_edge.clone()); + if k == 0 { + short_tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap()); + } + assembly.insert_regulator(Rc::new(short_tangency)); + + // set up the side tangencies + for i in 0..2 { + for j in 0..2 { + let side_tangency = InversiveDistanceRegulator::new( + [long_edge[i].clone(), short_edge[j].clone()] + ); + if i == 0 && k == 0 { + side_tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap()); + } + assembly.insert_regulator(Rc::new(side_tangency)); + } + } + } + } +} + +/* DEBUG */ +// the initial configuration of this test assembly deliberately violates the +// constraints, so loading the assembly will trigger a non-trivial realization +fn load_balanced_assemb(assembly: &Assembly) { + // create the spheres + const R_OUTER: f64 = 10.0; + const R_INNER: f64 = 4.0; + let spheres = [ + Sphere::new( + "outer".to_string(), + "Outer".to_string(), + [0.75_f32, 0.75_f32, 0.75_f32], + engine::sphere(0.0, 0.0, 0.0, R_OUTER) + ), + Sphere::new( + "a".to_string(), + "A".to_string(), + [1.00_f32, 0.00_f32, 0.25_f32], + engine::sphere(0.0, 4.0, 0.0, R_INNER) + ), + Sphere::new( + "b".to_string(), + "B".to_string(), + [0.00_f32, 0.25_f32, 1.00_f32], + engine::sphere(0.0, -4.0, 0.0, R_INNER) + ), + ]; + for sphere in spheres { + let _ = assembly.try_insert_element(sphere); + } + + // get references to the spheres + let [outer, a, b] = ["outer", "a", "b"].map( + |id| assembly.elements_by_id.with_untracked( + |elts_by_id| elts_by_id[id].clone() + ) + ); + + // fix the diameters of the outer, sun, and moon spheres + for (sphere, radius) in [ + (outer.clone(), R_OUTER), + (a.clone(), R_INNER), + (b.clone(), R_INNER) + ] { + let curvature_regulator = sphere.regulators().with_untracked( + |regs| regs.first().unwrap().clone() + ); + let curvature = 0.5 / radius; + curvature_regulator.set_point().set( + SpecifiedValue::try_from(curvature.to_string()).unwrap() + ); + } + + // set the inversive distances between the spheres. as described above, the + // initial configuration deliberately violates these constraints + for inner in [a, b] { + let tangency = InversiveDistanceRegulator::new([outer.clone(), inner]); + tangency.set_point.set(SpecifiedValue::try_from("1".to_string()).unwrap()); + assembly.insert_regulator(Rc::new(tangency)); + } +} + +/* DEBUG */ +// the initial configuration of this test assembly deliberately violates the +// constraints, so loading the assembly will trigger a non-trivial realization +fn load_off_center_assemb(assembly: &Assembly) { + // create a point almost at the origin and a sphere centered on the origin + let _ = assembly.try_insert_element( + Point::new( + "point".to_string(), + "Point".to_string(), + [0.75_f32, 0.75_f32, 0.75_f32], + engine::point(1e-9, 0.0, 0.0) + ), + ); + let _ = assembly.try_insert_element( + Sphere::new( + "sphere".to_string(), + "Sphere".to_string(), + [0.75_f32, 0.75_f32, 0.75_f32], + engine::sphere(0.0, 0.0, 0.0, 1.0) + ), + ); + + // get references to the elements + let point_and_sphere = ["point", "sphere"].map( + |id| assembly.elements_by_id.with_untracked( + |elts_by_id| elts_by_id[id].clone() + ) + ); + + // put the point on the sphere + let incidence = InversiveDistanceRegulator::new(point_and_sphere); + incidence.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap()); + assembly.insert_regulator(Rc::new(incidence)); +} + +// setting the inversive distances between the vertices to -2 gives a regular +// tetrahedron with side length 1, whose insphere and circumsphere have radii +// sqrt(1/6) and sqrt(3/2), respectively. to measure those radii, set an +// inversive distance of -1 between the insphere and each face, and then set an +// inversive distance of 0 between the circumsphere and each vertex +fn load_radius_ratio_assemb(assembly: &Assembly) { + let index_range = 1..=4; + + // create the spheres + const GRAY: ElementColor = [0.75_f32, 0.75_f32, 0.75_f32]; + let spheres = [ + Sphere::new( + "sphere_faces".to_string(), + "Insphere".to_string(), + GRAY, + engine::sphere(0.0, 0.0, 0.0, 0.5) + ), + Sphere::new( + "sphere_vertices".to_string(), + "Circumsphere".to_string(), + GRAY, + engine::sphere(0.0, 0.0, 0.0, 0.25) + ) + ]; + for sphere in spheres { + let _ = assembly.try_insert_element(sphere); + } + + // create the vertices + let vertices = izip!( + index_range.clone(), + [ + [1.00_f32, 0.50_f32, 0.75_f32], + [1.00_f32, 0.75_f32, 0.50_f32], + [1.00_f32, 1.00_f32, 0.50_f32], + [0.75_f32, 0.50_f32, 1.00_f32] + ].into_iter(), + [ + engine::point(-0.6, -0.8, -0.6), + engine::point(-0.6, 0.8, 0.6), + engine::point(0.6, -0.8, 0.6), + engine::point(0.6, 0.8, -0.6) + ].into_iter() + ).map( + |(k, color, representation)| { + Point::new( + format!("v{k}"), + format!("Vertex {k}"), + color, + representation + ) + } + ); + for vertex in vertices { + let _ = assembly.try_insert_element(vertex); + } + + // create the faces + let base_dir = Vector3::new(1.0, 0.75, 1.0).normalize(); + let offset = base_dir.dot(&Vector3::new(-0.6, 0.8, 0.6)); + let faces = izip!( + index_range.clone(), + [ + [1.00_f32, 0.00_f32, 0.25_f32], + [1.00_f32, 0.25_f32, 0.00_f32], + [0.75_f32, 0.75_f32, 0.00_f32], + [0.25_f32, 0.00_f32, 1.00_f32] + ].into_iter(), + [ + engine::sphere_with_offset(base_dir[0], base_dir[1], base_dir[2], offset, 0.0), + engine::sphere_with_offset(base_dir[0], -base_dir[1], -base_dir[2], offset, 0.0), + engine::sphere_with_offset(-base_dir[0], base_dir[1], -base_dir[2], offset, 0.0), + engine::sphere_with_offset(-base_dir[0], -base_dir[1], base_dir[2], offset, 0.0) + ].into_iter() + ).map( + |(k, color, representation)| { + Sphere::new( + format!("f{k}"), + format!("Face {k}"), + color, + representation + ) + } + ); + for face in faces { + face.ghost().set(true); + let _ = assembly.try_insert_element(face); + } + + // impose the constraints + for j in index_range.clone() { + let [face_j, vertex_j] = [ + format!("f{j}"), + format!("v{j}") + ].map( + |id| assembly.elements_by_id.with_untracked( + |elts_by_id| elts_by_id[&id].clone() + ) + ); + + // make the faces planar + let curvature_regulator = face_j.regulators().with_untracked( + |regs| regs.first().unwrap().clone() + ); + curvature_regulator.set_point().set( + SpecifiedValue::try_from("0".to_string()).unwrap() + ); + + for k in index_range.clone().filter(|&index| index != j) { + let vertex_k = assembly.elements_by_id.with_untracked( + |elts_by_id| elts_by_id[&format!("v{k}")].clone() + ); + + // fix the distances between the vertices + if j < k { + let distance_regulator = InversiveDistanceRegulator::new( + [vertex_j.clone(), vertex_k.clone()] + ); + assembly.insert_regulator(Rc::new(distance_regulator)); + } + + // put the vertices on the faces + let incidence_regulator = InversiveDistanceRegulator::new([face_j.clone(), vertex_k.clone()]); + incidence_regulator.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap()); + assembly.insert_regulator(Rc::new(incidence_regulator)); + } + } +} + +// to finish setting up the problem, fix the following curvatures: +// sun 1 +// moon 5/3 = 1.666666666666666... +// chain1 2 +// a tiny `x` or `z` nudge of the outer sphere reliably prevents realization +// failures before they happen, or resolves them after they happen. the result +// depends sensitively on the translation direction, suggesting that realization +// is failing because the engine is having trouble breaking a symmetry +// /* TO DO */ +// the engine's performance on this problem is scale-dependent! with the current +// initial conditions, realization fails for any order of imposing the remaining +// curvature constraints. scaling everything up by a factor of ten, as done in +// the original problem, makes realization succeed reliably. one potentially +// relevant difference is that a lot of the numbers in the current initial +// conditions are exactly representable as floats, unlike the analogous numbers +// in the scaled-up problem. the inexact representations might break the +// symmetry that's getting the engine stuck +fn load_irisawa_hexlet_assemb(assembly: &Assembly) { + let index_range = 1..=6; + let colors = [ + [1.00_f32, 0.00_f32, 0.25_f32], + [1.00_f32, 0.25_f32, 0.00_f32], + [0.75_f32, 0.75_f32, 0.00_f32], + [0.25_f32, 1.00_f32, 0.00_f32], + [0.00_f32, 0.25_f32, 1.00_f32], + [0.25_f32, 0.00_f32, 1.00_f32] + ].into_iter(); + + // create the spheres + let spheres = [ + Sphere::new( + "outer".to_string(), + "Outer".to_string(), + [0.5_f32, 0.5_f32, 0.5_f32], + engine::sphere(0.0, 0.0, 0.0, 1.5) + ), + Sphere::new( + "sun".to_string(), + "Sun".to_string(), + [0.75_f32, 0.75_f32, 0.75_f32], + engine::sphere(0.0, -0.75, 0.0, 0.75) + ), + Sphere::new( + "moon".to_string(), + "Moon".to_string(), + [0.25_f32, 0.25_f32, 0.25_f32], + engine::sphere(0.0, 0.75, 0.0, 0.75) + ), + ].into_iter().chain( + index_range.clone().zip(colors).map( + |(k, color)| { + let ang = (k as f64) * PI/3.0; + Sphere::new( + format!("chain{k}"), + format!("Chain {k}"), + color, + engine::sphere(1.0 * ang.sin(), 0.0, 1.0 * ang.cos(), 0.5) + ) + } + ) + ); + for sphere in spheres { + let _ = assembly.try_insert_element(sphere); + } + + // put the outer sphere in ghost mode and fix its curvature + let outer = assembly.elements_by_id.with_untracked( + |elts_by_id| elts_by_id["outer"].clone() + ); + outer.ghost().set(true); + let outer_curvature_regulator = outer.regulators().with_untracked( + |regs| regs.first().unwrap().clone() + ); + outer_curvature_regulator.set_point().set( + SpecifiedValue::try_from((1.0 / 3.0).to_string()).unwrap() + ); + + // impose the desired tangencies + let [outer, sun, moon] = ["outer", "sun", "moon"].map( + |id| assembly.elements_by_id.with_untracked( + |elts_by_id| elts_by_id[id].clone() + ) + ); + let chain = index_range.map( + |k| assembly.elements_by_id.with_untracked( + |elts_by_id| elts_by_id[&format!("chain{k}")].clone() + ) + ); + for (chain_sphere, chain_sphere_next) in chain.clone().zip(chain.cycle().skip(1)) { + for (other_sphere, inversive_distance) in [ + (outer.clone(), "1"), + (sun.clone(), "-1"), + (moon.clone(), "-1"), + (chain_sphere_next.clone(), "-1") + ] { + let tangency = InversiveDistanceRegulator::new([chain_sphere.clone(), other_sphere]); + tangency.set_point.set(SpecifiedValue::try_from(inversive_distance.to_string()).unwrap()); + assembly.insert_regulator(Rc::new(tangency)); + } + } + + let outer_sun_tangency = InversiveDistanceRegulator::new([outer.clone(), sun]); + outer_sun_tangency.set_point.set(SpecifiedValue::try_from("1".to_string()).unwrap()); + assembly.insert_regulator(Rc::new(outer_sun_tangency)); + + let outer_moon_tangency = InversiveDistanceRegulator::new([outer.clone(), moon]); + outer_moon_tangency.set_point.set(SpecifiedValue::try_from("1".to_string()).unwrap()); + assembly.insert_regulator(Rc::new(outer_moon_tangency)); +} + #[component] pub fn AddRemove() -> View { /* DEBUG */ @@ -192,6 +898,9 @@ pub fn AddRemove() -> View { let state = use_context::(); let assembly = &state.assembly; + // pause realization + assembly.keep_realized.set(false); + // clear state assembly.regulators.update(|regs| regs.clear()); assembly.elements.update(|elts| elts.clear()); @@ -204,8 +913,17 @@ pub fn AddRemove() -> View { "general" => load_gen_assemb(assembly), "low-curv" => load_low_curv_assemb(assembly), "pointed" => load_pointed_assemb(assembly), + "tridim-icosahedron" => load_tridim_icosahedron_assemb(assembly), + "dodeca-packing" => load_dodeca_packing_assemb(assembly), + "balanced" => load_balanced_assemb(assembly), + "off-center" => load_off_center_assemb(assembly), + "radius-ratio" => load_radius_ratio_assemb(assembly), + "irisawa-hexlet" => load_irisawa_hexlet_assemb(assembly), _ => () }; + + // resume realization + assembly.keep_realized.set(true); }); }); @@ -252,6 +970,12 @@ pub fn AddRemove() -> View { option(value="general") { "General" } option(value="low-curv") { "Low-curvature" } option(value="pointed") { "Pointed" } + option(value="tridim-icosahedron") { "Tridiminished icosahedron" } + option(value="dodeca-packing") { "Dodecahedral packing" } + option(value="balanced") { "Balanced" } + option(value="off-center") { "Off-center" } + option(value="radius-ratio") { "Radius ratio" } + option(value="irisawa-hexlet") { "Irisawa hexlet" } option(value="empty") { "Empty" } } } diff --git a/app-proto/src/assembly.rs b/app-proto/src/assembly.rs index c3b0c6b..e696845 100644 --- a/app-proto/src/assembly.rs +++ b/app-proto/src/assembly.rs @@ -552,6 +552,10 @@ pub struct Assembly { // indexing pub elements_by_id: Signal>>, + // realization control + pub keep_realized: Signal, + pub needs_realization: Signal, + // realization diagnostics pub realization_status: Signal>, pub descent_history: Signal @@ -559,14 +563,30 @@ pub struct Assembly { impl Assembly { pub fn new() -> Assembly { - Assembly { + // create an assembly + let assembly = Assembly { elements: create_signal(BTreeSet::new()), regulators: create_signal(BTreeSet::new()), tangent: create_signal(ConfigSubspace::zero(0)), elements_by_id: create_signal(BTreeMap::default()), + keep_realized: create_signal(true), + needs_realization: create_signal(false), realization_status: create_signal(Ok(())), descent_history: create_signal(DescentHistory::new()) - } + }; + + // realize the assembly whenever it becomes simultaneously true that + // we're trying to keep it realized and it needs realization + let assembly_for_effect = assembly.clone(); + create_effect(move || { + let should_realize = assembly_for_effect.keep_realized.get() + && assembly_for_effect.needs_realization.get(); + if should_realize { + assembly_for_effect.realize(); + } + }); + + assembly } // --- inserting elements and regulators --- @@ -627,7 +647,7 @@ impl Assembly { regulators.update(|regs| regs.insert(regulator.clone())); } - // update the realization when the regulator becomes a constraint, or is + // request a realization when the regulator becomes a constraint, or is // edited while acting as a constraint let self_for_effect = self.clone(); create_effect(move || { @@ -636,7 +656,7 @@ impl Assembly { console_log!("Updated regulator with subjects {:?}", regulator.subjects()); if regulator.try_activate() { - self_for_effect.realize(); + self_for_effect.needs_realization.set(true); } }); @@ -731,6 +751,9 @@ impl Assembly { // save the tangent space self.tangent.set_silent(tangent); + + // clear the realization request flag + self.needs_realization.set(false); }, Err(message) => { // report the realization status. the `Err(message)` we're @@ -826,10 +849,10 @@ impl Assembly { }); } - // bring the configuration back onto the solution variety. this also - // gets the elements' column indices and the saved tangent space back in - // sync - self.realize(); + // request a realization to bring the configuration back onto the + // solution variety. this also gets the elements' column indices and the + // saved tangent space back in sync + self.needs_realization.set(true); } }