diff --git a/app-proto/examples/point-on-sphere.rs b/app-proto/examples/point-on-sphere.rs index 13040e5..2820793 100644 --- a/app-proto/examples/point-on-sphere.rs +++ b/app-proto/examples/point-on-sphere.rs @@ -1,26 +1,19 @@ -use nalgebra::DMatrix; - -use dyna3::engine::{Q, point, realize_gram, sphere, PartialMatrix}; +use dyna3::engine::{Q, point, realize_gram, sphere, ConstraintProblem}; fn main() { - let gram = { - let mut gram_to_be = PartialMatrix::new(); - for j in 0..2 { - for k in j..2 { - gram_to_be.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 }); - } - } - gram_to_be - }; - let guess = DMatrix::from_columns(&[ + let mut problem = ConstraintProblem::from_guess(&[ point(0.0, 0.0, 2.0), sphere(0.0, 0.0, 0.0, 1.0) ]); - let frozen = [(3, 0)]; + for j in 0..2 { + for k in j..2 { + problem.gram.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 }); + } + } + problem.frozen.push((3, 0)); println!(); let (config, _, success, history) = realize_gram( - &gram, guess, &frozen, - 1.0e-12, 0.5, 0.9, 1.1, 200, 110 + &problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110 ); print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config); print!("Configuration:{}", config); diff --git a/app-proto/examples/three-spheres.rs b/app-proto/examples/three-spheres.rs index 19acfd1..3f3cc44 100644 --- a/app-proto/examples/three-spheres.rs +++ b/app-proto/examples/three-spheres.rs @@ -1,29 +1,22 @@ -use nalgebra::DMatrix; - -use dyna3::engine::{Q, realize_gram, sphere, PartialMatrix}; +use dyna3::engine::{Q, realize_gram, sphere, ConstraintProblem}; fn main() { - let gram = { - let mut gram_to_be = PartialMatrix::new(); - for j in 0..3 { - for k in j..3 { - gram_to_be.push_sym(j, k, if j == k { 1.0 } else { -1.0 }); - } - } - gram_to_be - }; - let guess = { + let mut problem = ConstraintProblem::from_guess({ let a: f64 = 0.75_f64.sqrt(); - DMatrix::from_columns(&[ + &[ sphere(1.0, 0.0, 0.0, 1.0), sphere(-0.5, a, 0.0, 1.0), sphere(-0.5, -a, 0.0, 1.0) - ]) - }; + ] + }); + for j in 0..3 { + for k in j..3 { + problem.gram.push_sym(j, k, if j == k { 1.0 } else { -1.0 }); + } + } println!(); let (config, _, success, history) = realize_gram( - &gram, guess, &[], - 1.0e-12, 0.5, 0.9, 1.1, 200, 110 + &problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110 ); print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config); if success { diff --git a/app-proto/src/assembly.rs b/app-proto/src/assembly.rs index 18176df..289b271 100644 --- a/app-proto/src/assembly.rs +++ b/app-proto/src/assembly.rs @@ -6,7 +6,13 @@ use sycamore::prelude::*; use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */ use crate::{ - engine::{Q, local_unif_to_std, realize_gram, ConfigSubspace, PartialMatrix}, + engine::{ + Q, + local_unif_to_std, + realize_gram, + ConfigSubspace, + ConstraintProblem + }, specified::SpecifiedValue }; @@ -268,6 +274,11 @@ impl Assembly { // --- realization --- pub fn realize(&self) { + // create a blank constraint problem + let mut problem = ConstraintProblem::new( + self.elements.with_untracked(|elts| elts.len()) + ); + // index the elements self.elements.update_silent(|elts| { for (index, (_, elt)) in elts.into_iter().enumerate() { @@ -276,9 +287,8 @@ impl Assembly { }); // set up the Gram matrix and the initial configuration matrix - let (gram, guess) = self.elements.with_untracked(|elts| { + self.elements.with_untracked(|elts| { // set up the off-diagonal part of the Gram matrix - let mut gram_to_be = PartialMatrix::new(); self.regulators.with_untracked(|regs| { for (_, reg) in regs { reg.set_point.with_untracked(|set_pt| { @@ -286,7 +296,7 @@ impl Assembly { let subjects = reg.subjects; let row = elts[subjects.0].column_index.unwrap(); let col = elts[subjects.1].column_index.unwrap(); - gram_to_be.push_sym(row, col, val); + problem.gram.push_sym(row, col, val); } }); } @@ -294,36 +304,32 @@ impl Assembly { // set up the initial configuration matrix and the diagonal of the // Gram matrix - let mut guess_to_be = DMatrix::::zeros(5, elts.len()); for (_, elt) in elts { let index = elt.column_index.unwrap(); - gram_to_be.push_sym(index, index, 1.0); - guess_to_be.set_column(index, &elt.representation.get_clone_untracked()); + problem.gram.push_sym(index, index, 1.0); + problem.guess.set_column(index, &elt.representation.get_clone_untracked()); } - - (gram_to_be, guess_to_be) }); /* DEBUG */ // log the Gram matrix console::log_1(&JsValue::from("Gram matrix:")); - gram.log_to_console(); + problem.gram.log_to_console(); /* DEBUG */ // log the initial configuration matrix console::log_1(&JsValue::from("Old configuration:")); - for j in 0..guess.nrows() { + for j in 0..problem.guess.nrows() { let mut row_str = String::new(); - for k in 0..guess.ncols() { - row_str.push_str(format!(" {:>8.3}", guess[(j, k)]).as_str()); + for k in 0..problem.guess.ncols() { + row_str.push_str(format!(" {:>8.3}", problem.guess[(j, k)]).as_str()); } console::log_1(&JsValue::from(row_str)); } // look for a configuration with the given Gram matrix let (config, tangent, success, history) = realize_gram( - &gram, guess, &[], - 1.0e-12, 0.5, 0.9, 1.1, 200, 110 + &problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110 ); /* DEBUG */ diff --git a/app-proto/src/engine.rs b/app-proto/src/engine.rs index 35f898c..deb88bd 100644 --- a/app-proto/src/engine.rs +++ b/app-proto/src/engine.rs @@ -195,6 +195,34 @@ impl DescentHistory { } } +// --- constraint problems --- + +pub struct ConstraintProblem { + pub gram: PartialMatrix, + pub guess: DMatrix, + pub frozen: Vec<(usize, usize)> +} + +impl ConstraintProblem { + pub fn new(element_count: usize) -> ConstraintProblem { + const ELEMENT_DIM: usize = 5; + ConstraintProblem { + gram: PartialMatrix::new(), + guess: DMatrix::::zeros(ELEMENT_DIM, element_count), + frozen: Vec::new() + } + } + + #[cfg(feature = "dev")] + pub fn from_guess(guess_columns: &[DVector]) -> ConstraintProblem { + ConstraintProblem { + gram: PartialMatrix::new(), + guess: DMatrix::from_columns(guess_columns), + frozen: Vec::new() + } + } +} + // --- gram matrix realization --- // the Lorentz form @@ -289,9 +317,7 @@ fn seek_better_config( // seek a matrix `config` for which `config' * Q * config` matches the partial // matrix `gram`. use gradient descent starting from `guess` pub fn realize_gram( - gram: &PartialMatrix, - guess: DMatrix, - frozen: &[(usize, usize)], + problem: &ConstraintProblem, scaled_tol: f64, min_efficiency: f64, backoff: f64, @@ -299,6 +325,11 @@ pub fn realize_gram( max_descent_steps: i32, max_backoff_steps: i32 ) -> (DMatrix, ConfigSubspace, bool, DescentHistory) { + // destructure the problem data + let ConstraintProblem { + gram, guess, frozen + } = problem; + // start the descent history let mut history = DescentHistory::new(); @@ -317,7 +348,7 @@ pub fn realize_gram( ).collect(); // use Newton's method with backtracking and gradient descent backup - let mut state = SearchState::from_config(gram, guess); + let mut state = SearchState::from_config(gram, guess.clone()); let mut hess = DMatrix::zeros(element_dim, assembly_dim); for _ in 0..max_descent_steps { // find the negative gradient of the loss function @@ -415,7 +446,7 @@ pub fn realize_gram( #[cfg(feature = "dev")] pub mod examples { - use std::{array, f64::consts::PI}; + use std::f64::consts::PI; use super::*; @@ -428,35 +459,7 @@ pub mod examples { // https://www.nippon.com/en/japan-topics/c12801/ // pub fn realize_irisawa_hexlet(scaled_tol: f64) -> (DMatrix, ConfigSubspace, bool, DescentHistory) { - let gram = { - let mut gram_to_be = PartialMatrix::new(); - for s in 0..9 { - // each sphere is represented by a spacelike vector - gram_to_be.push_sym(s, s, 1.0); - - // the circumscribing sphere is tangent to all of the other - // spheres, with matching orientation - if s > 0 { - gram_to_be.push_sym(0, s, 1.0); - } - - if s > 2 { - // each chain sphere is tangent to the "sun" and "moon" - // spheres, with opposing orientation - for n in 1..3 { - gram_to_be.push_sym(s, n, -1.0); - } - - // each chain sphere is tangent to the next chain sphere, - // with opposing orientation - let s_next = 3 + (s-2) % 6; - gram_to_be.push_sym(s, s_next, -1.0); - } - } - gram_to_be - }; - - let guess = DMatrix::from_columns( + let mut problem = ConstraintProblem::from_guess( [ sphere(0.0, 0.0, 0.0, 15.0), sphere(0.0, 0.0, -9.0, 5.0), @@ -471,42 +474,45 @@ pub mod examples { ).collect::>().as_slice() ); + for s in 0..9 { + // each sphere is represented by a spacelike vector + problem.gram.push_sym(s, s, 1.0); + + // the circumscribing sphere is tangent to all of the other + // spheres, with matching orientation + if s > 0 { + problem.gram.push_sym(0, s, 1.0); + } + + if s > 2 { + // each chain sphere is tangent to the "sun" and "moon" + // spheres, with opposing orientation + for n in 1..3 { + problem.gram.push_sym(s, n, -1.0); + } + + // each chain sphere is tangent to the next chain sphere, + // with opposing orientation + let s_next = 3 + (s-2) % 6; + problem.gram.push_sym(s, s_next, -1.0); + } + } + // the frozen entries fix the radii of the circumscribing sphere, the // "sun" and "moon" spheres, and one of the chain spheres - let frozen: [(usize, usize); 4] = array::from_fn(|k| (3, k)); + for k in 0..4 { + problem.frozen.push((3, k)) + } - realize_gram( - &gram, guess, &frozen, - scaled_tol, 0.5, 0.9, 1.1, 200, 110 - ) + realize_gram(&problem, scaled_tol, 0.5, 0.9, 1.1, 200, 110) } // set up a kaleidocycle, made of points with fixed distances between them, // and find its tangent space pub fn realize_kaleidocycle(scaled_tol: f64) -> (DMatrix, ConfigSubspace, bool, DescentHistory) { - const N_POINTS: usize = 12; - let gram = { - let mut gram_to_be = PartialMatrix::new(); - for block in (0..N_POINTS).step_by(2) { - let block_next = (block + 2) % N_POINTS; - for j in 0..2 { - // diagonal and hinge edges - for k in j..2 { - gram_to_be.push_sym(block + j, block + k, if j == k { 0.0 } else { -0.5 }); - } - - // non-hinge edges - for k in 0..2 { - gram_to_be.push_sym(block + j, block_next + k, -0.625); - } - } - } - gram_to_be - }; - - let guess = { - const N_HINGES: usize = 6; - let guess_elts = (0..N_HINGES).step_by(2).flat_map( + const N_HINGES: usize = 6; + let mut problem = ConstraintProblem::from_guess( + (0..N_HINGES).step_by(2).flat_map( |n| { let ang_hor = (n as f64) * PI/3.0; let ang_vert = ((n + 1) as f64) * PI/3.0; @@ -519,16 +525,30 @@ pub mod examples { point(x_vert, y_vert, 0.5) ] } - ).collect::>(); - DMatrix::from_columns(&guess_elts) - }; + ).collect::>().as_slice() + ); - let frozen: [_; N_POINTS] = array::from_fn(|k| (3, k)); + const N_POINTS: usize = 2 * N_HINGES; + for block in (0..N_POINTS).step_by(2) { + let block_next = (block + 2) % N_POINTS; + for j in 0..2 { + // diagonal and hinge edges + for k in j..2 { + problem.gram.push_sym(block + j, block + k, if j == k { 0.0 } else { -0.5 }); + } + + // non-hinge edges + for k in 0..2 { + problem.gram.push_sym(block + j, block_next + k, -0.625); + } + } + } - realize_gram( - &gram, guess, &frozen, - scaled_tol, 0.5, 0.9, 1.1, 200, 110 - ) + for k in 0..N_POINTS { + problem.frozen.push((3, k)) + } + + realize_gram(&problem, scaled_tol, 0.5, 0.9, 1.1, 200, 110) } } @@ -588,33 +608,29 @@ mod tests { // and the realized configuration should match the initial guess #[test] fn frozen_entry_test() { - let gram = { - let mut gram_to_be = PartialMatrix::new(); - for j in 0..2 { - for k in j..2 { - gram_to_be.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 }); - } - } - gram_to_be - }; - let guess = DMatrix::from_columns(&[ + let mut problem = ConstraintProblem::from_guess(&[ point(0.0, 0.0, 2.0), sphere(0.0, 0.0, 0.0, 1.0) ]); - let frozen = [(3, 0), (3, 1)]; - println!(); + for j in 0..2 { + for k in j..2 { + problem.gram.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 }); + } + } + for k in 0..2 { + problem.frozen.push((3, k)); + } let (config, _, success, history) = realize_gram( - &gram, guess.clone(), &frozen, - 1.0e-12, 0.5, 0.9, 1.1, 200, 110 + &problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110 ); assert_eq!(success, true); for base_step in history.base_step.into_iter() { - for index in frozen { + for &index in &problem.frozen { assert_eq!(base_step[index], 0.0); } } - for index in frozen { - assert_eq!(config[index], guess[index]); + for index in problem.frozen { + assert_eq!(config[index], problem.guess[index]); } } @@ -635,34 +651,32 @@ mod tests { #[test] fn tangent_test_three_spheres() { const SCALED_TOL: f64 = 1.0e-12; - let gram = { - let mut gram_to_be = PartialMatrix::new(); - for j in 0..3 { - for k in j..3 { - gram_to_be.push_sym(j, k, if j == k { 1.0 } else { -1.0 }); - } - } - gram_to_be - }; - let guess = DMatrix::from_columns(&[ + const ELEMENT_DIM: usize = 5; + let mut problem = ConstraintProblem::from_guess(&[ sphere(0.0, 0.0, 0.0, -2.0), sphere(0.0, 0.0, 1.0, 1.0), sphere(0.0, 0.0, -1.0, 1.0) ]); - let frozen: [_; 5] = std::array::from_fn(|k| (k, 0)); + for j in 0..3 { + for k in j..3 { + problem.gram.push_sym(j, k, if j == k { 1.0 } else { -1.0 }); + } + } + for n in 0..ELEMENT_DIM { + problem.frozen.push((n, 0)); + } let (config, tangent, success, history) = realize_gram( - &gram, guess.clone(), &frozen, - SCALED_TOL, 0.5, 0.9, 1.1, 200, 110 + &problem, SCALED_TOL, 0.5, 0.9, 1.1, 200, 110 ); - assert_eq!(config, guess); + assert_eq!(config, problem.guess); assert_eq!(success, true); assert_eq!(history.scaled_loss.len(), 1); // list some motions that should form a basis for the tangent space of // the solution variety const UNIFORM_DIM: usize = 4; - let element_dim = guess.nrows(); - let assembly_dim = guess.ncols(); + let element_dim = problem.guess.nrows(); + let assembly_dim = problem.guess.ncols(); let tangent_motions_unif = vec![ basis_matrix((0, 1), UNIFORM_DIM, assembly_dim), basis_matrix((1, 1), UNIFORM_DIM, assembly_dim), @@ -805,22 +819,17 @@ mod tests { fn proj_equivar_test() { // find a pair of spheres that meet at 120° const SCALED_TOL: f64 = 1.0e-12; - let gram = { - let mut gram_to_be = PartialMatrix::new(); - gram_to_be.push_sym(0, 0, 1.0); - gram_to_be.push_sym(1, 1, 1.0); - gram_to_be.push_sym(0, 1, 0.5); - gram_to_be - }; - let guess_orig = DMatrix::from_columns(&[ + let mut problem_orig = ConstraintProblem::from_guess(&[ sphere(0.0, 0.0, 0.5, 1.0), sphere(0.0, 0.0, -0.5, 1.0) ]); + problem_orig.gram.push_sym(0, 0, 1.0); + problem_orig.gram.push_sym(1, 1, 1.0); + problem_orig.gram.push_sym(0, 1, 0.5); let (config_orig, tangent_orig, success_orig, history_orig) = realize_gram( - &gram, guess_orig.clone(), &[], - SCALED_TOL, 0.5, 0.9, 1.1, 200, 110 + &problem_orig, SCALED_TOL, 0.5, 0.9, 1.1, 200, 110 ); - assert_eq!(config_orig, guess_orig); + assert_eq!(config_orig, problem_orig.guess); assert_eq!(success_orig, true); assert_eq!(history_orig.scaled_loss.len(), 1); @@ -833,11 +842,15 @@ mod tests { sphere(-a, 0.0, 7.0 - a, 1.0) ]) }; + let problem_tfm = ConstraintProblem { + gram: problem_orig.gram, + guess: guess_tfm, + frozen: problem_orig.frozen + }; let (config_tfm, tangent_tfm, success_tfm, history_tfm) = realize_gram( - &gram, guess_tfm.clone(), &[], - SCALED_TOL, 0.5, 0.9, 1.1, 200, 110 + &problem_tfm, SCALED_TOL, 0.5, 0.9, 1.1, 200, 110 ); - assert_eq!(config_tfm, guess_tfm); + assert_eq!(config_tfm, problem_tfm.guess); assert_eq!(success_tfm, true); assert_eq!(history_tfm.scaled_loss.len(), 1); @@ -869,7 +882,7 @@ mod tests { // the comparison tolerance because the transformation seems to // introduce some numerical error const SCALED_TOL_TFM: f64 = 1.0e-9; - let tol_sq = ((guess_orig.nrows() * guess_orig.ncols()) as f64) * SCALED_TOL_TFM * SCALED_TOL_TFM; + let tol_sq = ((problem_orig.guess.nrows() * problem_orig.guess.ncols()) as f64) * SCALED_TOL_TFM * SCALED_TOL_TFM; assert!((motion_proj_tfm - motion_tfm_proj).norm_squared() < tol_sq); } } \ No newline at end of file