diff --git a/app-proto/examples/point-on-sphere.rs b/app-proto/examples/point-on-sphere.rs index 2820793..880d7b0 100644 --- a/app-proto/examples/point-on-sphere.rs +++ b/app-proto/examples/point-on-sphere.rs @@ -10,7 +10,7 @@ fn main() { problem.gram.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 }); } } - problem.frozen.push((3, 0)); + problem.frozen.push(3, 0, problem.guess[(3, 0)]); println!(); let (config, _, success, history) = realize_gram( &problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110 diff --git a/app-proto/src/engine.rs b/app-proto/src/engine.rs index deb88bd..44f44e0 100644 --- a/app-proto/src/engine.rs +++ b/app-proto/src/engine.rs @@ -37,7 +37,7 @@ pub fn sphere_with_offset(dir_x: f64, dir_y: f64, dir_z: f64, off: f64, curv: f6 // --- partial matrices --- -struct MatrixEntry { +pub struct MatrixEntry { index: (usize, usize), value: f64 } @@ -49,42 +49,72 @@ impl PartialMatrix { PartialMatrix(Vec::::new()) } - pub fn push_sym(&mut self, row: usize, col: usize, value: f64) { + pub fn push(&mut self, row: usize, col: usize, value: f64) { let PartialMatrix(entries) = self; entries.push(MatrixEntry { index: (row, col), value: value }); + } + + pub fn push_sym(&mut self, row: usize, col: usize, value: f64) { + self.push(row, col, value); if row != col { - entries.push(MatrixEntry { index: (col, row), value: value }); + self.push(col, row, value); } } /* DEBUG */ pub fn log_to_console(&self) { - let PartialMatrix(entries) = self; - for ent in entries { - let ent_str = format!(" {} {} {}", ent.index.0, ent.index.1, ent.value); - console::log_1(&JsValue::from(ent_str.as_str())); + for &MatrixEntry { index: (row, col), value } in self { + console::log_1(&JsValue::from( + format!(" {} {} {}", row, col, value) + )); } } + fn freeze(&self, a: &DMatrix) -> DMatrix { + let mut result = a.clone(); + for &MatrixEntry { index, value } in self { + result[index] = value; + } + result + } + fn proj(&self, a: &DMatrix) -> DMatrix { let mut result = DMatrix::::zeros(a.nrows(), a.ncols()); - let PartialMatrix(entries) = self; - for ent in entries { - result[ent.index] = a[ent.index]; + for &MatrixEntry { index, .. } in self { + result[index] = a[index]; } result } fn sub_proj(&self, rhs: &DMatrix) -> DMatrix { let mut result = DMatrix::::zeros(rhs.nrows(), rhs.ncols()); - let PartialMatrix(entries) = self; - for ent in entries { - result[ent.index] = ent.value - rhs[ent.index]; + for &MatrixEntry { index, value } in self { + result[index] = value - rhs[index]; } result } } +impl IntoIterator for PartialMatrix { + type Item = MatrixEntry; + type IntoIter = std::vec::IntoIter; + + fn into_iter(self) -> Self::IntoIter { + let PartialMatrix(entries) = self; + entries.into_iter() + } +} + +impl<'a> IntoIterator for &'a PartialMatrix { + type Item = &'a MatrixEntry; + type IntoIter = std::slice::Iter<'a, MatrixEntry>; + + fn into_iter(self) -> Self::IntoIter { + let PartialMatrix(entries) = self; + entries.into_iter() + } +} + // --- configuration subspaces --- #[derive(Clone)] @@ -199,8 +229,8 @@ impl DescentHistory { pub struct ConstraintProblem { pub gram: PartialMatrix, + pub frozen: PartialMatrix, pub guess: DMatrix, - pub frozen: Vec<(usize, usize)> } impl ConstraintProblem { @@ -208,8 +238,8 @@ impl ConstraintProblem { const ELEMENT_DIM: usize = 5; ConstraintProblem { gram: PartialMatrix::new(), - guess: DMatrix::::zeros(ELEMENT_DIM, element_count), - frozen: Vec::new() + frozen: PartialMatrix::new(), + guess: DMatrix::::zeros(ELEMENT_DIM, element_count) } } @@ -217,8 +247,8 @@ impl ConstraintProblem { pub fn from_guess(guess_columns: &[DVector]) -> ConstraintProblem { ConstraintProblem { gram: PartialMatrix::new(), - guess: DMatrix::from_columns(guess_columns), - frozen: Vec::new() + frozen: PartialMatrix::new(), + guess: DMatrix::from_columns(guess_columns) } } } @@ -314,8 +344,10 @@ fn seek_better_config( None } -// seek a matrix `config` for which `config' * Q * config` matches the partial -// matrix `gram`. use gradient descent starting from `guess` +// seek a matrix `config` that matches the partial matrix `problem.frozen` and +// has `config' * Q * config` matching the partial matrix `problem.gram`. start +// at `problem.guess`, set the frozen entries to their desired values, and then +// use a regularized Newton's method to seek the desired Gram matrix pub fn realize_gram( problem: &ConstraintProblem, scaled_tol: f64, @@ -344,11 +376,11 @@ pub fn realize_gram( // convert the frozen indices to stacked format let frozen_stacked: Vec = frozen.into_iter().map( - |index| index.1*element_dim + index.0 + |MatrixEntry { index: (row, col), .. }| col*element_dim + row ).collect(); - // use Newton's method with backtracking and gradient descent backup - let mut state = SearchState::from_config(gram, guess.clone()); + // use a regularized Newton's method with backtracking + let mut state = SearchState::from_config(gram, frozen.freeze(guess)); let mut hess = DMatrix::zeros(element_dim, assembly_dim); for _ in 0..max_descent_steps { // find the negative gradient of the loss function @@ -501,7 +533,7 @@ pub mod examples { // the frozen entries fix the radii of the circumscribing sphere, the // "sun" and "moon" spheres, and one of the chain spheres for k in 0..4 { - problem.frozen.push((3, k)) + problem.frozen.push(3, k, problem.guess[(3, k)]); } realize_gram(&problem, scaled_tol, 0.5, 0.9, 1.1, 200, 110) @@ -545,7 +577,7 @@ pub mod examples { } for k in 0..N_POINTS { - problem.frozen.push((3, k)) + problem.frozen.push(3, k, problem.guess[(3, k)]) } realize_gram(&problem, scaled_tol, 0.5, 0.9, 1.1, 200, 110) @@ -559,6 +591,25 @@ mod tests { use super::{*, examples::*}; + #[test] + fn freeze_test() { + let frozen = PartialMatrix(vec![ + MatrixEntry { index: (0, 0), value: 14.0 }, + MatrixEntry { index: (0, 2), value: 28.0 }, + MatrixEntry { index: (1, 1), value: 42.0 }, + MatrixEntry { index: (1, 2), value: 49.0 } + ]); + let config = DMatrix::::from_row_slice(2, 3, &[ + 1.0, 2.0, 3.0, + 4.0, 5.0, 6.0 + ]); + let expected_result = DMatrix::::from_row_slice(2, 3, &[ + 14.0, 2.0, 28.0, + 4.0, 42.0, 49.0 + ]); + assert_eq!(frozen.freeze(&config), expected_result); + } + #[test] fn sub_proj_test() { let target = PartialMatrix(vec![ @@ -580,18 +631,12 @@ mod tests { #[test] fn zero_loss_test() { - let gram = PartialMatrix({ - let mut entries = Vec::::new(); - for j in 0..3 { - for k in 0..3 { - entries.push(MatrixEntry { - index: (j, k), - value: if j == k { 1.0 } else { -1.0 } - }); - } + let mut gram = PartialMatrix::new(); + for j in 0..3 { + for k in 0..3 { + gram.push(j, k, if j == k { 1.0 } else { -1.0 }); } - entries - }); + } let config = { let a = 0.75_f64.sqrt(); DMatrix::from_columns(&[ @@ -604,33 +649,33 @@ mod tests { assert!(state.loss.abs() < f64::EPSILON); } + /* TO DO */ // at the frozen indices, the optimization steps should have exact zeros, - // and the realized configuration should match the initial guess + // and the realized configuration should have the desired values #[test] fn frozen_entry_test() { let mut problem = ConstraintProblem::from_guess(&[ point(0.0, 0.0, 2.0), - sphere(0.0, 0.0, 0.0, 1.0) + sphere(0.0, 0.0, 0.0, 0.95) ]); for j in 0..2 { for k in j..2 { problem.gram.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 }); } } - for k in 0..2 { - problem.frozen.push((3, k)); - } + problem.frozen.push(3, 0, problem.guess[(3, 0)]); + problem.frozen.push(3, 1, 0.5); let (config, _, success, history) = realize_gram( &problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110 ); assert_eq!(success, true); for base_step in history.base_step.into_iter() { - for &index in &problem.frozen { + for &MatrixEntry { index, .. } in &problem.frozen { assert_eq!(base_step[index], 0.0); } } - for index in problem.frozen { - assert_eq!(config[index], problem.guess[index]); + for MatrixEntry { index, value } in problem.frozen { + assert_eq!(config[index], value); } } @@ -663,7 +708,7 @@ mod tests { } } for n in 0..ELEMENT_DIM { - problem.frozen.push((n, 0)); + problem.frozen.push(n, 0, problem.guess[(n, 0)]); } let (config, tangent, success, history) = realize_gram( &problem, SCALED_TOL, 0.5, 0.9, 1.1, 200, 110