forked from StudioInfinity/dyna3
Add Irisawa hexlet example
Hat tip Romy, who sent me the article on sangaku that led me to this problem.
This commit is contained in:
parent
19a4d49497
commit
a26f1e3927
2 changed files with 182 additions and 0 deletions
77
engine-proto/gram-test/irisawa-hexlet.jl
Normal file
77
engine-proto/gram-test/irisawa-hexlet.jl
Normal file
|
@ -0,0 +1,77 @@
|
|||
include("Engine.jl")
|
||||
|
||||
using SparseArrays
|
||||
|
||||
# this problem is from a sangaku by Irisawa Shintarō Hiroatsu. the article below
|
||||
# includes a nice translation of the problem statement, which was recorded in
|
||||
# Uchida Itsumi's book _Kokon sankan_ (_Mathematics, Past and Present_)
|
||||
#
|
||||
# "Japan's 'Wasan' Mathematical Tradition", by Abe Haruki
|
||||
# https://www.nippon.com/en/japan-topics/c12801/
|
||||
#
|
||||
|
||||
# initialize the partial gram matrix
|
||||
J = Int64[]
|
||||
K = Int64[]
|
||||
values = BigFloat[]
|
||||
for s in 1:9
|
||||
# each sphere is represented by a spacelike vector
|
||||
push!(J, s)
|
||||
push!(K, s)
|
||||
push!(values, 1)
|
||||
|
||||
# the circumscribing sphere is internally tangent to all of the other spheres
|
||||
if s > 1
|
||||
append!(J, [1, s])
|
||||
append!(K, [s, 1])
|
||||
append!(values, [1, 1])
|
||||
end
|
||||
|
||||
if s > 3
|
||||
# each chain sphere is externally tangent to the two nucleus spheres
|
||||
for n in 2:3
|
||||
append!(J, [s, n])
|
||||
append!(K, [n, s])
|
||||
append!(values, [-1, -1])
|
||||
end
|
||||
|
||||
# each chain sphere is externally tangent to the next sphere in the chain
|
||||
s_next = 4 + mod(s-3, 6)
|
||||
append!(J, [s, s_next])
|
||||
append!(K, [s_next, s])
|
||||
append!(values, [-1, -1])
|
||||
end
|
||||
end
|
||||
gram = sparse(J, K, values)
|
||||
|
||||
# make an initial guess
|
||||
guess = hcat(
|
||||
Engine.sphere(BigFloat[0, 0, 0], BigFloat(15)),
|
||||
Engine.sphere(BigFloat[0, 0, -9], BigFloat(5)),
|
||||
Engine.sphere(BigFloat[0, 0, 11], BigFloat(3)),
|
||||
(
|
||||
Engine.sphere(9*BigFloat[cos(k*π/3), sin(k*π/3), 0], BigFloat(2.5))
|
||||
for k in 1:6
|
||||
)...
|
||||
)
|
||||
frozen = [CartesianIndex(4, k) for k in 1:4]
|
||||
|
||||
# complete the gram matrix using Newton's method with backtracking
|
||||
L, success, history = Engine.realize_gram(gram, guess, frozen)
|
||||
completed_gram = L'*Engine.Q*L
|
||||
println("Completed Gram matrix:\n")
|
||||
display(completed_gram)
|
||||
if success
|
||||
println("\nTarget accuracy achieved!")
|
||||
else
|
||||
println("\nFailed to reach target accuracy")
|
||||
end
|
||||
println("Steps: ", size(history.scaled_loss, 1))
|
||||
println("Loss: ", history.scaled_loss[end], "\n")
|
||||
if success
|
||||
println("Chain diameters:")
|
||||
println(" ", 1 / L[4,4], " sun (given)")
|
||||
for k in 5:9
|
||||
println(" ", 1 / L[4,k], " sun")
|
||||
end
|
||||
end
|
Loading…
Add table
Add a link
Reference in a new issue