Implement the uniform inner product for points

This commit is contained in:
Aaron Fenyes 2025-01-20 15:44:20 -08:00
parent 03da831c9a
commit a05a2e1d54
3 changed files with 112 additions and 10 deletions

View file

@ -132,6 +132,9 @@ impl ConfigSubspace {
// orthonormalize the basis with respect to the projection inner product
let basis_proj_orth = basis_proj.qr().q();
let basis_std_orth = proj_to_std * &basis_proj_orth;
// print the projection basis in projection coordinates
#[cfg(all(target_family = "wasm", target_os = "unknown"))]
console::log_1(&JsValue::from(
format!("Basis in projection coordinates:{}", basis_proj_orth)
));
@ -236,19 +239,36 @@ fn basis_matrix(index: (usize, usize), nrows: usize, ncols: usize) -> DMatrix<f6
result
}
// given a spacelike unit vector `v`, which represents a sphere, build the basis
// for the configuration space given by the three unit translation motions of
// the sphere, the unit shrinking motion of the sphere, and `v`
// given a normalized vector `v` representing an element, build a basis for the
// element's linear configuration space consisting of:
// - the unit translation motions of the element
// - the unit shrinking motion of the element, if it's a sphere
// - one or two vectors whose coefficients vanish on the tangent space of the
// normalization variety
pub fn local_unif_to_std(v: DVectorView<f64>) -> DMatrix<f64> {
const ELEMENT_DIM: usize = 5;
let curv = 2.0*v[3];
DMatrix::from_column_slice(ELEMENT_DIM, ELEMENT_DIM, &[
curv, 0.0, 0.0, 0.0, v[0],
0.0, curv, 0.0, 0.0, v[1],
0.0, 0.0, curv, 0.0, v[2],
curv*v[0], curv*v[1], curv*v[2], curv*v[3], curv*v[4] + 1.0,
v[0], v[1], v[2], v[3], v[4]
])
if v.dot(&(&*Q * v)) < 0.5 {
// `v` represents a point. the normalization condition says that the
// curvature component of `v` is 1/2
DMatrix::from_column_slice(ELEMENT_DIM, ELEMENT_DIM, &[
curv, 0.0, 0.0, 0.0, v[0],
0.0, curv, 0.0, 0.0, v[1],
0.0, 0.0, curv, 0.0, v[2],
v[0], v[1], v[2], v[3], v[4],
0.0, 0.0, 0.0, 0.0, 1.0
])
} else {
// `v` represents a sphere. the normalization condition says that the
// Lorentz product of `v` with itself is 1
DMatrix::from_column_slice(ELEMENT_DIM, ELEMENT_DIM, &[
curv, 0.0, 0.0, 0.0, v[0],
0.0, curv, 0.0, 0.0, v[1],
0.0, 0.0, curv, 0.0, v[2],
curv*v[0], curv*v[1], curv*v[2], curv*v[3], curv*v[4] + 1.0,
v[0], v[1], v[2], v[3], v[4]
])
}
}
// use backtracking line search to find a better configuration