Add the test assemblies for the demo

These are partial setups of the tetrahedron radius ratio problem and the
Irisawa hexlet problem.
This commit is contained in:
Aaron Fenyes 2025-06-12 10:51:09 -07:00
parent eba15a6e83
commit 6928ac8765
2 changed files with 272 additions and 6 deletions

View file

@ -1,11 +1,20 @@
use std::{f64::consts::FRAC_1_SQRT_2, rc::Rc};
use itertools::izip;
use nalgebra::Vector3;
use std::{f64::consts::{FRAC_1_SQRT_2, PI}, rc::Rc};
use sycamore::prelude::*;
use web_sys::{console, wasm_bindgen::JsValue};
use crate::{
engine,
AppState,
assembly::{Assembly, InversiveDistanceRegulator, Point, Sphere}
assembly::{
Assembly,
ElementColor,
InversiveDistanceRegulator,
Point,
Sphere
},
specified::SpecifiedValue
};
/* DEBUG */
@ -179,6 +188,241 @@ fn load_pointed_assemb(assembly: &Assembly) {
}
}
// to finish setting up the problem, fix the following curvatures:
// sun 1
// moon 5/3 = 1.666666666666666...
// chain1 2
// a tiny `x` or `z` nudge of the outer sphere reliably prevents realization
// failures before they happen, or resolves them after they happen. the result
// depends sensitively on the translation direction, suggesting that realization
// is failing because the engine is having trouble breaking a symmetry
// /* TO DO */
// the engine's performance on this problem is scale-dependent! with the current
// initial conditions, realization fails for any order of imposing the remaining
// curvature constraints. scaling everything up by a factor of ten, as done in
// the original problem, makes realization succeed reliably. one potentially
// relevant difference is that a lot of the numbers in the current initial
// conditions are exactly representable as floats, unlike the analogous numbers
// in the scaled-up problem. the inexact representations might break the
// symmetry that's getting the engine stuck
fn load_irisawa_hexlet_assemb(assembly: &Assembly) {
let index_range = 1..=6;
let colors = [
[1.00_f32, 0.00_f32, 0.25_f32],
[1.00_f32, 0.25_f32, 0.00_f32],
[0.75_f32, 0.75_f32, 0.00_f32],
[0.25_f32, 1.00_f32, 0.00_f32],
[0.00_f32, 0.25_f32, 1.00_f32],
[0.25_f32, 0.00_f32, 1.00_f32]
].into_iter();
// create the spheres
let spheres = [
Sphere::new(
"outer".to_string(),
"Outer".to_string(),
[0.5_f32, 0.5_f32, 0.5_f32],
engine::sphere(0.0, 0.0, 0.0, 1.5)
),
Sphere::new(
"sun".to_string(),
"Sun".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(0.0, -0.75, 0.0, 0.75)
),
Sphere::new(
"moon".to_string(),
"Moon".to_string(),
[0.25_f32, 0.25_f32, 0.25_f32],
engine::sphere(0.0, 0.75, 0.0, 0.75)
),
].into_iter().chain(
index_range.clone().zip(colors).map(
|(k, color)| {
let ang = (k as f64) * PI/3.0;
Sphere::new(
format!("chain{k}"),
format!("Chain {k}"),
color,
engine::sphere(1.0 * ang.sin(), 0.0, 1.0 * ang.cos(), 0.5)
)
}
)
);
for sphere in spheres {
let _ = assembly.try_insert_element(sphere);
}
// fix the curvature of the outer sphere
let outer = assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id["outer"].clone()
);
let outer_curvature_regulator = outer.regulators().with_untracked(
|regs| regs.first().unwrap().clone()
);
outer_curvature_regulator.set_point().set(
SpecifiedValue::try_from((1.0 / 3.0/*30.0*/).to_string()).unwrap()
);
// impose the desired tangencies
let [outer, sun, moon] = ["outer", "sun", "moon"].map(
|id| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[id].clone()
)
);
let chain = index_range.map(
|k| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&format!("chain{k}")].clone()
)
);
for (chain_sphere, chain_sphere_next) in chain.clone().zip(chain.cycle().skip(1)) {
for (other_sphere, inversive_distance) in [
(outer.clone(), "1"),
(sun.clone(), "-1"),
(moon.clone(), "-1"),
(chain_sphere_next.clone(), "-1")
] {
let tangency = InversiveDistanceRegulator::new([chain_sphere.clone(), other_sphere]);
tangency.set_point.set(SpecifiedValue::try_from(inversive_distance.to_string()).unwrap());
assembly.insert_regulator(Rc::new(tangency));
}
}
let outer_sun_tangency = InversiveDistanceRegulator::new([outer.clone(), sun]);
outer_sun_tangency.set_point.set(SpecifiedValue::try_from("1".to_string()).unwrap());
assembly.insert_regulator(Rc::new(outer_sun_tangency));
let outer_moon_tangency = InversiveDistanceRegulator::new([outer.clone(), moon]);
outer_moon_tangency.set_point.set(SpecifiedValue::try_from("1".to_string()).unwrap());
assembly.insert_regulator(Rc::new(outer_moon_tangency));
}
// setting the inversive distances between the vertices to -2 gives a
// regular tetrahedron with side length 1, whose insphere and circumsphere have
// radii sqrt(1/6) and sqrt(3/2), respectively
fn load_radius_ratio_assemb(assembly: &Assembly) {
let index_range = 1..=4;
// create the spheres
const GRAY: ElementColor = [0.75_f32, 0.75_f32, 0.75_f32];
let spheres = [
Sphere::new(
"sphere_faces".to_string(),
"Insphere".to_string(),
GRAY,
engine::sphere(0.0, 0.0, 0.0, 0.5)
),
Sphere::new(
"sphere_vertices".to_string(),
"Circumsphere".to_string(),
GRAY,
engine::sphere(0.0, 0.0, 0.0, 0.25)
)
];
for sphere in spheres {
let _ = assembly.try_insert_element(sphere);
}
// create the vertices
let vertices = izip!(
index_range.clone(),
[
[1.00_f32, 0.50_f32, 0.75_f32],
[1.00_f32, 0.75_f32, 0.50_f32],
[1.00_f32, 1.00_f32, 0.50_f32],
[0.75_f32, 0.50_f32, 1.00_f32]
].into_iter(),
[
engine::point(-0.6, -0.8, -0.6),
engine::point(-0.6, 0.8, 0.6),
engine::point(0.6, -0.8, 0.6),
engine::point(0.6, 0.8, -0.6)
].into_iter()
).map(
|(k, color, representation)| {
Point::new(
format!("v{k}"),
format!("Vertex {k}"),
color,
representation
)
}
);
for vertex in vertices {
let _ = assembly.try_insert_element(vertex);
}
// create the faces
let base_dir = Vector3::new(1.0, 0.75, 1.0).normalize();
let offset = base_dir.dot(&Vector3::new(-0.6, 0.8, 0.6));
let faces =izip!(
index_range.clone(),
[
[1.00_f32, 0.00_f32, 0.25_f32],
[1.00_f32, 0.25_f32, 0.00_f32],
[0.75_f32, 0.75_f32, 0.00_f32],
[0.25_f32, 0.00_f32, 1.00_f32]
].into_iter(),
[
engine::sphere_with_offset(base_dir[0], base_dir[1], base_dir[2], offset, 0.0),
engine::sphere_with_offset(base_dir[0], -base_dir[1], -base_dir[2], offset, 0.0),
engine::sphere_with_offset(-base_dir[0], base_dir[1], -base_dir[2], offset, 0.0),
engine::sphere_with_offset(-base_dir[0], -base_dir[1], base_dir[2], offset, 0.0)
].into_iter()
).map(
|(k, color, representation)| {
Sphere::new(
format!("f{k}"),
format!("Face {k}"),
color,
representation
)
}
);
for face in faces {
let _ = assembly.try_insert_element(face);
}
// impose the constraints
for j in index_range.clone() {
let [face_j, vertex_j] = [
format!("f{j}"),
format!("v{j}")
].map(
|id| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&id].clone()
)
);
// make the faces planar
let curvature_regulator = face_j.regulators().with_untracked(
|regs| regs.first().unwrap().clone()
);
curvature_regulator.set_point().set(
SpecifiedValue::try_from("0".to_string()).unwrap()
);
for k in index_range.clone().filter(|&index| index != j) {
let vertex_k = assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&format!("v{k}")].clone()
);
// fix the distances between the vertices
if j < k {
let distance_regulator = InversiveDistanceRegulator::new(
[vertex_j.clone(), vertex_k.clone()]
);
assembly.insert_regulator(Rc::new(distance_regulator));
}
// put the vertices on the faces
let incidence_regulator = InversiveDistanceRegulator::new([face_j.clone(), vertex_k.clone()]);
incidence_regulator.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
assembly.insert_regulator(Rc::new(incidence_regulator));
}
}
}
#[component]
pub fn AddRemove() -> View {
/* DEBUG */
@ -205,6 +449,8 @@ pub fn AddRemove() -> View {
"general" => load_gen_assemb(assembly),
"low-curv" => load_low_curv_assemb(assembly),
"pointed" => load_pointed_assemb(assembly),
"irisawa-hexlet" => load_irisawa_hexlet_assemb(assembly),
"radius-ratio" => load_radius_ratio_assemb(assembly),
_ => ()
};
});
@ -253,6 +499,8 @@ pub fn AddRemove() -> View {
option(value="general") { "General" }
option(value="low-curv") { "Low-curvature" }
option(value="pointed") { "Pointed" }
option(value="irisawa-hexlet") { "Irisawa hexlet" }
option(value="radius-ratio") { "Radius ratio" }
option(value="empty") { "Empty" }
}
}

View file

@ -534,6 +534,9 @@ pub struct Assembly {
pub elements: Signal<BTreeSet<Rc<dyn Element>>>,
pub regulators: Signal<BTreeSet<Rc<dyn Regulator>>>,
// a flag that tells us whether the assembly is realized
pub realized: Signal<bool>,
// solution variety tangent space. the basis vectors are stored in
// configuration matrix format, ordered according to the elements' column
// indices. when you realize the assembly, every element that's present
@ -552,12 +555,24 @@ pub struct Assembly {
impl Assembly {
pub fn new() -> Assembly {
Assembly {
// create an assembly
let assembly = Assembly {
elements: create_signal(BTreeSet::new()),
regulators: create_signal(BTreeSet::new()),
realized: create_signal(true),
tangent: create_signal(ConfigSubspace::zero(0)),
elements_by_id: create_signal(BTreeMap::default())
};
// realize the assembly whenever the `realized` flag is set to `false`
let assembly_for_effect = assembly.clone();
create_memo(move || {
if !assembly_for_effect.realized.get() {
assembly_for_effect.realize();
}
});
assembly
}
// --- inserting elements and regulators ---
@ -627,7 +642,7 @@ impl Assembly {
console_log!("Updated regulator with subjects {:?}", regulator.subjects());
if regulator.try_activate() {
self_for_effect.realize();
self_for_effect.realized.set(false);
}
});
@ -710,6 +725,9 @@ impl Assembly {
);
}
// update the realization flag
self.realized.set(true);
// save the tangent space
self.tangent.set_silent(tangent);
}
@ -802,7 +820,7 @@ impl Assembly {
// bring the configuration back onto the solution variety. this also
// gets the elements' column indices and the saved tangent space back in
// sync
self.realize();
self.realized.set(false);
}
}