forked from StudioInfinity/dyna3
Factor out the kaleidocycle realization
This parallels what we did for the Irisawa hexlet realization. The kaleidocycle tangent test comes out slightly weaker, because we no longer confirm that the realized configuration matches the initial guess. However, we still confirm that the configuration history only has one entry, which is equivalent as long as the configuration history starts with the initial guess and is updated after every optimization step.
This commit is contained in:
parent
9283858a41
commit
55ccfb9ebc
3 changed files with 76 additions and 110 deletions
|
@ -1,4 +1,4 @@
|
|||
use dyna3::engine::{Q, irisawa::realize_irisawa_hexlet};
|
||||
use dyna3::engine::{Q, examples::realize_irisawa_hexlet};
|
||||
|
||||
fn main() {
|
||||
const SCALED_TOL: f64 = 1.0e-12;
|
||||
|
|
|
@ -1,53 +1,10 @@
|
|||
use nalgebra::{DMatrix, DVector};
|
||||
use std::{array, f64::consts::PI};
|
||||
|
||||
use dyna3::engine::{Q, point, realize_gram, PartialMatrix};
|
||||
use dyna3::engine::{Q, examples::realize_kaleidocycle};
|
||||
|
||||
fn main() {
|
||||
// set up a kaleidocycle, made of points with fixed distances between them,
|
||||
// and find its tangent space
|
||||
const N_POINTS: usize = 12;
|
||||
let gram = {
|
||||
let mut gram_to_be = PartialMatrix::new();
|
||||
for block in (0..N_POINTS).step_by(2) {
|
||||
let block_next = (block + 2) % N_POINTS;
|
||||
for j in 0..2 {
|
||||
// diagonal and hinge edges
|
||||
for k in j..2 {
|
||||
gram_to_be.push_sym(block + j, block + k, if j == k { 0.0 } else { -0.5 });
|
||||
}
|
||||
|
||||
// non-hinge edges
|
||||
for k in 0..2 {
|
||||
gram_to_be.push_sym(block + j, block_next + k, -0.625);
|
||||
}
|
||||
}
|
||||
}
|
||||
gram_to_be
|
||||
};
|
||||
let guess = {
|
||||
const N_HINGES: usize = 6;
|
||||
let guess_elts = (0..N_HINGES).step_by(2).flat_map(
|
||||
|n| {
|
||||
let ang_hor = (n as f64) * PI/3.0;
|
||||
let ang_vert = ((n + 1) as f64) * PI/3.0;
|
||||
let x_vert = ang_vert.cos();
|
||||
let y_vert = ang_vert.sin();
|
||||
[
|
||||
point(0.0, 0.0, 0.0),
|
||||
point(ang_hor.cos(), ang_hor.sin(), 0.0),
|
||||
point(x_vert, y_vert, -0.5),
|
||||
point(x_vert, y_vert, 0.5)
|
||||
]
|
||||
}
|
||||
).collect::<Vec<_>>();
|
||||
DMatrix::from_columns(&guess_elts)
|
||||
};
|
||||
let frozen: [_; N_POINTS] = array::from_fn(|k| (3, k));
|
||||
let (config, tangent, success, history) = realize_gram(
|
||||
&gram, guess, &frozen,
|
||||
1.0e-12, 0.5, 0.9, 1.1, 200, 110
|
||||
);
|
||||
const SCALED_TOL: f64 = 1.0e-12;
|
||||
let (config, tangent, success, history) = realize_kaleidocycle(SCALED_TOL);
|
||||
print!("Completed Gram matrix:{}", config.tr_mul(&*Q) * &config);
|
||||
print!("Configuration:{}", config);
|
||||
if success {
|
||||
|
@ -58,7 +15,8 @@ fn main() {
|
|||
println!("Steps: {}", history.scaled_loss.len() - 1);
|
||||
println!("Loss: {}\n", history.scaled_loss.last().unwrap());
|
||||
|
||||
// find the kaleidocycle's twist motion
|
||||
// find the kaleidocycle's twist motion by projecting onto the tangent space
|
||||
const N_POINTS: usize = 12;
|
||||
let up = DVector::from_column_slice(&[0.0, 0.0, 1.0, 0.0]);
|
||||
let down = -&up;
|
||||
let twist_motion: DMatrix<_> = (0..N_POINTS).step_by(4).flat_map(
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue