Factor out the kaleidocycle realization

This parallels what we did for the Irisawa hexlet realization. The
kaleidocycle tangent test comes out slightly weaker, because we no
longer confirm that the realized configuration matches the initial
guess. However, we still confirm that the configuration history only has
one entry, which is equivalent as long as the configuration history
starts with the initial guess and is updated after every optimization
step.
This commit is contained in:
Aaron Fenyes 2025-02-28 00:33:35 -08:00
parent 9283858a41
commit 55ccfb9ebc
3 changed files with 76 additions and 110 deletions

View file

@ -1,4 +1,4 @@
use dyna3::engine::{Q, irisawa::realize_irisawa_hexlet};
use dyna3::engine::{Q, examples::realize_irisawa_hexlet};
fn main() {
const SCALED_TOL: f64 = 1.0e-12;

View file

@ -1,53 +1,10 @@
use nalgebra::{DMatrix, DVector};
use std::{array, f64::consts::PI};
use dyna3::engine::{Q, point, realize_gram, PartialMatrix};
use dyna3::engine::{Q, examples::realize_kaleidocycle};
fn main() {
// set up a kaleidocycle, made of points with fixed distances between them,
// and find its tangent space
const N_POINTS: usize = 12;
let gram = {
let mut gram_to_be = PartialMatrix::new();
for block in (0..N_POINTS).step_by(2) {
let block_next = (block + 2) % N_POINTS;
for j in 0..2 {
// diagonal and hinge edges
for k in j..2 {
gram_to_be.push_sym(block + j, block + k, if j == k { 0.0 } else { -0.5 });
}
// non-hinge edges
for k in 0..2 {
gram_to_be.push_sym(block + j, block_next + k, -0.625);
}
}
}
gram_to_be
};
let guess = {
const N_HINGES: usize = 6;
let guess_elts = (0..N_HINGES).step_by(2).flat_map(
|n| {
let ang_hor = (n as f64) * PI/3.0;
let ang_vert = ((n + 1) as f64) * PI/3.0;
let x_vert = ang_vert.cos();
let y_vert = ang_vert.sin();
[
point(0.0, 0.0, 0.0),
point(ang_hor.cos(), ang_hor.sin(), 0.0),
point(x_vert, y_vert, -0.5),
point(x_vert, y_vert, 0.5)
]
}
).collect::<Vec<_>>();
DMatrix::from_columns(&guess_elts)
};
let frozen: [_; N_POINTS] = array::from_fn(|k| (3, k));
let (config, tangent, success, history) = realize_gram(
&gram, guess, &frozen,
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
const SCALED_TOL: f64 = 1.0e-12;
let (config, tangent, success, history) = realize_kaleidocycle(SCALED_TOL);
print!("Completed Gram matrix:{}", config.tr_mul(&*Q) * &config);
print!("Configuration:{}", config);
if success {
@ -58,7 +15,8 @@ fn main() {
println!("Steps: {}", history.scaled_loss.len() - 1);
println!("Loss: {}\n", history.scaled_loss.last().unwrap());
// find the kaleidocycle's twist motion
// find the kaleidocycle's twist motion by projecting onto the tangent space
const N_POINTS: usize = 12;
let up = DVector::from_column_slice(&[0.0, 0.0, 1.0, 0.0]);
let down = -&up;
let twist_motion: DMatrix<_> = (0..N_POINTS).step_by(4).flat_map(