forked from StudioInfinity/dyna3
Use Newton's method for polishing
This commit is contained in:
parent
d538cbf716
commit
3910b9f740
4 changed files with 103 additions and 18 deletions
|
@ -55,7 +55,6 @@ gram = sparse(J, K, values)
|
|||
## guess = Engine.rand_on_shell(fill(BigFloat(-1), 8))
|
||||
|
||||
# set initial guess
|
||||
#=
|
||||
guess = hcat(
|
||||
Engine.plane(BigFloat[0, 0, 1], BigFloat(0)),
|
||||
Engine.sphere(BigFloat[0, 0, 0], BigFloat(1//2)),
|
||||
|
@ -67,7 +66,7 @@ guess = hcat(
|
|||
Engine.sphere(BigFloat[cos(pi/3), sin(pi/3), 0], BigFloat(1//5)),
|
||||
BigFloat[0, 0, 0, 1, 1]
|
||||
)
|
||||
=#
|
||||
#=
|
||||
guess = hcat(
|
||||
Engine.plane(BigFloat[0, 0, 1], BigFloat(0)),
|
||||
Engine.sphere(BigFloat[0, 0, 0], BigFloat(0.9)),
|
||||
|
@ -79,11 +78,19 @@ guess = hcat(
|
|||
Engine.sphere(4//3*BigFloat[cos(pi/3), sin(pi/3), 0], BigFloat(1//3)),
|
||||
BigFloat[0, 0, 0, 1, 1]
|
||||
)
|
||||
=#
|
||||
|
||||
# complete the gram matrix using gradient descent
|
||||
L, history = Engine.realize_gram(gram, guess, max_descent_steps = 200)
|
||||
# complete the gram matrix using gradient descent followed by Newton's method
|
||||
L, history = Engine.realize_gram_gradient(gram, guess, scaled_tol = 0.01)
|
||||
L_pol, history_pol = Engine.realize_gram_newton(gram, L, rate = 0.3, scaled_tol = 1e-9)
|
||||
L_pol2, history_pol2 = Engine.realize_gram_newton(gram, L_pol)
|
||||
completed_gram = L'*Engine.Q*L
|
||||
println("Completed Gram matrix:\n")
|
||||
display(completed_gram)
|
||||
println("\nSteps: ", size(history.stepsize, 1))
|
||||
println("Loss: ", history.scaled_loss[end], "\n")
|
||||
println(
|
||||
"\nSteps: ",
|
||||
size(history.scaled_loss, 1),
|
||||
" + ", size(history_pol.scaled_loss, 1),
|
||||
" + ", size(history_pol2.scaled_loss, 1)
|
||||
)
|
||||
println("Loss: ", history_pol2.scaled_loss[end], "\n")
|
Loading…
Add table
Add a link
Reference in a new issue