
This introduces a dependency on the Charming crate, which we use to plot the loss history, and the ECharts JavaScript library, which Charming depends on. Now that there's more than one canvas on the page, we have to pick out the display by ID rather than by element type in our style sheet.
900 lines
No EOL
34 KiB
Rust
900 lines
No EOL
34 KiB
Rust
use core::array;
|
|
use nalgebra::{DMatrix, DVector, Rotation3, Vector3};
|
|
use std::rc::Rc;
|
|
use sycamore::{prelude::*, motion::create_raf};
|
|
use web_sys::{
|
|
console,
|
|
window,
|
|
KeyboardEvent,
|
|
MouseEvent,
|
|
WebGl2RenderingContext,
|
|
WebGlBuffer,
|
|
WebGlProgram,
|
|
WebGlShader,
|
|
WebGlUniformLocation,
|
|
wasm_bindgen::{JsCast, JsValue}
|
|
};
|
|
|
|
use crate::{
|
|
AppState,
|
|
assembly::{Element, ElementColor, ElementMotion, Point, Sphere}
|
|
};
|
|
|
|
// --- color ---
|
|
|
|
const COLOR_SIZE: usize = 3;
|
|
type ColorWithOpacity = [f32; COLOR_SIZE + 1];
|
|
|
|
fn combine_channels(color: ElementColor, opacity: f32) -> ColorWithOpacity {
|
|
let mut color_with_opacity = [0.0; COLOR_SIZE + 1];
|
|
color_with_opacity[..COLOR_SIZE].copy_from_slice(&color);
|
|
color_with_opacity[COLOR_SIZE] = opacity;
|
|
color_with_opacity
|
|
}
|
|
|
|
// --- scene data ---
|
|
|
|
struct SceneSpheres {
|
|
representations: Vec<DVector<f64>>,
|
|
colors_with_opacity: Vec<ColorWithOpacity>,
|
|
highlights: Vec<f32>
|
|
}
|
|
|
|
impl SceneSpheres {
|
|
fn new() -> SceneSpheres{
|
|
SceneSpheres {
|
|
representations: Vec::new(),
|
|
colors_with_opacity: Vec::new(),
|
|
highlights: Vec::new()
|
|
}
|
|
}
|
|
|
|
fn len_i32(&self) -> i32 {
|
|
self.representations.len().try_into().expect("Number of spheres must fit in a 32-bit integer")
|
|
}
|
|
|
|
fn push(&mut self, representation: DVector<f64>, color: ElementColor, opacity: f32, highlight: f32) {
|
|
self.representations.push(representation);
|
|
self.colors_with_opacity.push(combine_channels(color, opacity));
|
|
self.highlights.push(highlight);
|
|
}
|
|
}
|
|
|
|
struct ScenePoints {
|
|
representations: Vec<DVector<f64>>,
|
|
colors_with_opacity: Vec<ColorWithOpacity>,
|
|
highlights: Vec<f32>,
|
|
selections: Vec<f32>
|
|
}
|
|
|
|
impl ScenePoints {
|
|
fn new() -> ScenePoints {
|
|
ScenePoints {
|
|
representations: Vec::new(),
|
|
colors_with_opacity: Vec::new(),
|
|
highlights: Vec::new(),
|
|
selections: Vec::new()
|
|
}
|
|
}
|
|
|
|
fn push(&mut self, representation: DVector<f64>, color: ElementColor, opacity: f32, highlight: f32, selected: bool) {
|
|
self.representations.push(representation);
|
|
self.colors_with_opacity.push(combine_channels(color, opacity));
|
|
self.highlights.push(highlight);
|
|
self.selections.push(if selected { 1.0 } else { 0.0 });
|
|
}
|
|
}
|
|
|
|
pub struct Scene {
|
|
spheres: SceneSpheres,
|
|
points: ScenePoints
|
|
}
|
|
|
|
impl Scene {
|
|
fn new() -> Scene {
|
|
Scene {
|
|
spheres: SceneSpheres::new(),
|
|
points: ScenePoints::new()
|
|
}
|
|
}
|
|
}
|
|
|
|
pub trait DisplayItem {
|
|
fn show(&self, scene: &mut Scene, selected: bool);
|
|
|
|
// the smallest positive depth, represented as a multiple of `dir`, where
|
|
// the line generated by `dir` hits the element. returns `None` if the line
|
|
// misses the element
|
|
fn cast(&self, dir: Vector3<f64>, assembly_to_world: &DMatrix<f64>, pixel_size: f64) -> Option<f64>;
|
|
}
|
|
|
|
impl DisplayItem for Sphere {
|
|
fn show(&self, scene: &mut Scene, selected: bool) {
|
|
/* SCAFFOLDING */
|
|
const DEFAULT_OPACITY: f32 = 0.5;
|
|
const GHOST_OPACITY: f32 = 0.2;
|
|
const HIGHLIGHT: f32 = 0.2;
|
|
|
|
let representation = self.representation.get_clone_untracked();
|
|
let color = if selected { self.color.map(|channel| 0.2 + 0.8*channel) } else { self.color };
|
|
let opacity = if self.ghost.get() { GHOST_OPACITY } else { DEFAULT_OPACITY };
|
|
let highlight = if selected { 1.0 } else { HIGHLIGHT };
|
|
scene.spheres.push(representation, color, opacity, highlight);
|
|
}
|
|
|
|
// this method should be kept synchronized with `sphere_cast` in
|
|
// `spheres.frag`, which does essentially the same thing on the GPU side
|
|
fn cast(&self, dir: Vector3<f64>, assembly_to_world: &DMatrix<f64>, _pixel_size: f64) -> Option<f64> {
|
|
// if `a/b` is less than this threshold, we approximate
|
|
// `a*u^2 + b*u + c` by the linear function `b*u + c`
|
|
const DEG_THRESHOLD: f64 = 1e-9;
|
|
|
|
let rep = self.representation.with_untracked(|rep| assembly_to_world * rep);
|
|
let a = -rep[3] * dir.norm_squared();
|
|
let b = rep.rows_range(..3).dot(&dir);
|
|
let c = -rep[4];
|
|
|
|
let adjust = 4.0*a*c/(b*b);
|
|
if adjust < 1.0 {
|
|
// as long as `b` is non-zero, the linear approximation of
|
|
//
|
|
// a*u^2 + b*u + c
|
|
//
|
|
// at `u = 0` will reach zero at a finite depth `u_lin`. the root of
|
|
// the quadratic adjacent to `u_lin` is stored in `lin_root`. if
|
|
// both roots have the same sign, `lin_root` will be the one closer
|
|
// to `u = 0`
|
|
let square_rect_ratio = 1.0 + (1.0 - adjust).sqrt();
|
|
let lin_root = -(2.0*c)/b / square_rect_ratio;
|
|
if a.abs() > DEG_THRESHOLD * b.abs() {
|
|
if lin_root > 0.0 {
|
|
Some(lin_root)
|
|
} else {
|
|
let other_root = -b/(2.*a) * square_rect_ratio;
|
|
(other_root > 0.0).then_some(other_root)
|
|
}
|
|
} else {
|
|
(lin_root > 0.0).then_some(lin_root)
|
|
}
|
|
} else {
|
|
// the line through `dir` misses the sphere completely
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
impl DisplayItem for Point {
|
|
fn show(&self, scene: &mut Scene, selected: bool) {
|
|
/* SCAFFOLDING */
|
|
const GHOST_OPACITY: f32 = 0.4;
|
|
const HIGHLIGHT: f32 = 0.5;
|
|
|
|
let representation = self.representation.get_clone_untracked();
|
|
let color = if selected { self.color.map(|channel| 0.2 + 0.8*channel) } else { self.color };
|
|
let opacity = if self.ghost.get() { GHOST_OPACITY } else { 1.0 };
|
|
let highlight = if selected { 1.0 } else { HIGHLIGHT };
|
|
scene.points.push(representation, color, opacity, highlight, selected);
|
|
}
|
|
|
|
/* SCAFFOLDING */
|
|
fn cast(&self, dir: Vector3<f64>, assembly_to_world: &DMatrix<f64>, pixel_size: f64) -> Option<f64> {
|
|
let rep = self.representation.with_untracked(|rep| assembly_to_world * rep);
|
|
if rep[2] < 0.0 {
|
|
// this constant should be kept synchronized with `point.frag`
|
|
const POINT_RADIUS_PX: f64 = 4.0;
|
|
|
|
// find the radius of the point in screen projection units
|
|
let point_radius_proj = POINT_RADIUS_PX * pixel_size;
|
|
|
|
// find the squared distance between the screen projections of the
|
|
// ray and the point
|
|
let dir_proj = -dir.fixed_rows::<2>(0) / dir[2];
|
|
let rep_proj = -rep.fixed_rows::<2>(0) / rep[2];
|
|
let dist_sq = (dir_proj - rep_proj).norm_squared();
|
|
|
|
// if the ray hits the point, return its depth
|
|
if dist_sq < point_radius_proj * point_radius_proj {
|
|
Some(rep[2] / dir[2])
|
|
} else {
|
|
None
|
|
}
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
// --- WebGL utilities ---
|
|
|
|
fn compile_shader(
|
|
context: &WebGl2RenderingContext,
|
|
shader_type: u32,
|
|
source: &str,
|
|
) -> WebGlShader {
|
|
let shader = context.create_shader(shader_type).unwrap();
|
|
context.shader_source(&shader, source);
|
|
context.compile_shader(&shader);
|
|
shader
|
|
}
|
|
|
|
fn set_up_program(
|
|
context: &WebGl2RenderingContext,
|
|
vertex_shader_source: &str,
|
|
fragment_shader_source: &str
|
|
) -> WebGlProgram {
|
|
// compile the shaders
|
|
let vertex_shader = compile_shader(
|
|
&context,
|
|
WebGl2RenderingContext::VERTEX_SHADER,
|
|
vertex_shader_source,
|
|
);
|
|
let fragment_shader = compile_shader(
|
|
&context,
|
|
WebGl2RenderingContext::FRAGMENT_SHADER,
|
|
fragment_shader_source,
|
|
);
|
|
|
|
// create the program and attach the shaders
|
|
let program = context.create_program().unwrap();
|
|
context.attach_shader(&program, &vertex_shader);
|
|
context.attach_shader(&program, &fragment_shader);
|
|
context.link_program(&program);
|
|
|
|
/* DEBUG */
|
|
// report whether linking succeeded
|
|
let link_status = context
|
|
.get_program_parameter(&program, WebGl2RenderingContext::LINK_STATUS)
|
|
.as_bool()
|
|
.unwrap();
|
|
let link_msg = if link_status {
|
|
"Linked successfully"
|
|
} else {
|
|
"Linking failed"
|
|
};
|
|
console::log_1(&JsValue::from(link_msg));
|
|
|
|
program
|
|
}
|
|
|
|
fn get_uniform_array_locations<const N: usize>(
|
|
context: &WebGl2RenderingContext,
|
|
program: &WebGlProgram,
|
|
var_name: &str,
|
|
member_name_opt: Option<&str>
|
|
) -> [Option<WebGlUniformLocation>; N] {
|
|
array::from_fn(|n| {
|
|
let name = match member_name_opt {
|
|
Some(member_name) => format!("{var_name}[{n}].{member_name}"),
|
|
None => format!("{var_name}[{n}]")
|
|
};
|
|
context.get_uniform_location(&program, name.as_str())
|
|
})
|
|
}
|
|
|
|
// bind the given vertex buffer object to the given vertex attribute
|
|
fn bind_to_attribute(
|
|
context: &WebGl2RenderingContext,
|
|
attr_index: u32,
|
|
attr_size: i32,
|
|
buffer: &Option<WebGlBuffer>
|
|
) {
|
|
context.bind_buffer(WebGl2RenderingContext::ARRAY_BUFFER, buffer.as_ref());
|
|
context.vertex_attrib_pointer_with_i32(
|
|
attr_index,
|
|
attr_size,
|
|
WebGl2RenderingContext::FLOAT,
|
|
false, // don't normalize
|
|
0, // zero stride
|
|
0, // zero offset
|
|
);
|
|
}
|
|
|
|
// load the given data into a new vertex buffer object
|
|
fn load_new_buffer(
|
|
context: &WebGl2RenderingContext,
|
|
data: &[f32]
|
|
) -> Option<WebGlBuffer> {
|
|
// create a buffer and bind it to ARRAY_BUFFER
|
|
let buffer = context.create_buffer();
|
|
context.bind_buffer(WebGl2RenderingContext::ARRAY_BUFFER, buffer.as_ref());
|
|
|
|
// load the given data into the buffer. this block is unsafe because
|
|
// `Float32Array::view` creates a raw view into our module's
|
|
// `WebAssembly.Memory` buffer. allocating more memory will change the
|
|
// buffer, invalidating the view, so we have to make sure we don't allocate
|
|
// any memory until the view is dropped. we're okay here because the view is
|
|
// used as soon as it's created
|
|
unsafe {
|
|
context.buffer_data_with_array_buffer_view(
|
|
WebGl2RenderingContext::ARRAY_BUFFER,
|
|
&js_sys::Float32Array::view(&data),
|
|
WebGl2RenderingContext::STATIC_DRAW,
|
|
);
|
|
}
|
|
|
|
buffer
|
|
}
|
|
|
|
fn bind_new_buffer_to_attribute(
|
|
context: &WebGl2RenderingContext,
|
|
attr_index: u32,
|
|
attr_size: i32,
|
|
data: &[f32]
|
|
) {
|
|
let buffer = load_new_buffer(context, data);
|
|
bind_to_attribute(context, attr_index, attr_size, &buffer);
|
|
}
|
|
|
|
// the direction in camera space that a mouse event is pointing along
|
|
fn event_dir(event: &MouseEvent) -> (Vector3<f64>, f64) {
|
|
let target: web_sys::Element = event.target().unwrap().unchecked_into();
|
|
let rect = target.get_bounding_client_rect();
|
|
let width = rect.width();
|
|
let height = rect.height();
|
|
let shortdim = width.min(height);
|
|
|
|
// this constant should be kept synchronized with `spheres.frag` and
|
|
// `point.vert`
|
|
const FOCAL_SLOPE: f64 = 0.3;
|
|
|
|
(
|
|
Vector3::new(
|
|
FOCAL_SLOPE * (2.0*(f64::from(event.client_x()) - rect.left()) - width) / shortdim,
|
|
FOCAL_SLOPE * (2.0*(rect.bottom() - f64::from(event.client_y())) - height) / shortdim,
|
|
-1.0
|
|
),
|
|
FOCAL_SLOPE * 2.0 / shortdim
|
|
)
|
|
}
|
|
|
|
// --- display component ---
|
|
|
|
#[component]
|
|
pub fn Display() -> View {
|
|
let state = use_context::<AppState>();
|
|
|
|
// canvas
|
|
let display = create_node_ref();
|
|
|
|
// viewpoint
|
|
let assembly_to_world = create_signal(DMatrix::<f64>::identity(5, 5));
|
|
|
|
// navigation
|
|
let pitch_up = create_signal(0.0);
|
|
let pitch_down = create_signal(0.0);
|
|
let yaw_right = create_signal(0.0);
|
|
let yaw_left = create_signal(0.0);
|
|
let roll_ccw = create_signal(0.0);
|
|
let roll_cw = create_signal(0.0);
|
|
let zoom_in = create_signal(0.0);
|
|
let zoom_out = create_signal(0.0);
|
|
let turntable = create_signal(false); /* BENCHMARKING */
|
|
|
|
// manipulation
|
|
let translate_neg_x = create_signal(0.0);
|
|
let translate_pos_x = create_signal(0.0);
|
|
let translate_neg_y = create_signal(0.0);
|
|
let translate_pos_y = create_signal(0.0);
|
|
let translate_neg_z = create_signal(0.0);
|
|
let translate_pos_z = create_signal(0.0);
|
|
let shrink_neg = create_signal(0.0);
|
|
let shrink_pos = create_signal(0.0);
|
|
|
|
// change listener
|
|
let scene_changed = create_signal(true);
|
|
create_effect(move || {
|
|
state.assembly.elements.with(|elts| {
|
|
for elt in elts {
|
|
elt.representation().track();
|
|
elt.ghost().track();
|
|
}
|
|
});
|
|
state.selection.track();
|
|
scene_changed.set(true);
|
|
});
|
|
|
|
/* INSTRUMENTS */
|
|
const SAMPLE_PERIOD: i32 = 60;
|
|
let mut last_sample_time = 0.0;
|
|
let mut frames_since_last_sample = 0;
|
|
let mean_frame_interval = create_signal(0.0);
|
|
|
|
let assembly_for_raf = state.assembly.clone();
|
|
on_mount(move || {
|
|
// timing
|
|
let mut last_time = 0.0;
|
|
|
|
// viewpoint
|
|
const ROT_SPEED: f64 = 0.4; // in radians per second
|
|
const ZOOM_SPEED: f64 = 0.15; // multiplicative rate per second
|
|
const TURNTABLE_SPEED: f64 = 0.1; /* BENCHMARKING */
|
|
let mut orientation = DMatrix::<f64>::identity(5, 5);
|
|
let mut rotation = DMatrix::<f64>::identity(5, 5);
|
|
let mut location_z: f64 = 5.0;
|
|
|
|
// manipulation
|
|
const TRANSLATION_SPEED: f64 = 0.15; // in length units per second
|
|
const SHRINKING_SPEED: f64 = 0.15; // in length units per second
|
|
|
|
// display parameters
|
|
const LAYER_THRESHOLD: i32 = 0; /* DEBUG */
|
|
const DEBUG_MODE: i32 = 0; /* DEBUG */
|
|
|
|
/* INSTRUMENTS */
|
|
let performance = window().unwrap().performance().unwrap();
|
|
|
|
// get the display canvas
|
|
let canvas = display.get().unchecked_into::<web_sys::HtmlCanvasElement>();
|
|
let ctx = canvas
|
|
.get_context("webgl2")
|
|
.unwrap()
|
|
.unwrap()
|
|
.dyn_into::<WebGl2RenderingContext>()
|
|
.unwrap();
|
|
|
|
// disable depth testing
|
|
ctx.disable(WebGl2RenderingContext::DEPTH_TEST);
|
|
|
|
// set blend mode
|
|
ctx.enable(WebGl2RenderingContext::BLEND);
|
|
ctx.blend_func(WebGl2RenderingContext::SRC_ALPHA, WebGl2RenderingContext::ONE_MINUS_SRC_ALPHA);
|
|
|
|
// set up the sphere rendering program
|
|
let sphere_program = set_up_program(
|
|
&ctx,
|
|
include_str!("identity.vert"),
|
|
include_str!("spheres.frag")
|
|
);
|
|
|
|
// set up the point rendering program
|
|
let point_program = set_up_program(
|
|
&ctx,
|
|
include_str!("point.vert"),
|
|
include_str!("point.frag")
|
|
);
|
|
|
|
/* DEBUG */
|
|
// print the maximum number of vectors that can be passed as
|
|
// uniforms to a fragment shader. the OpenGL ES 3.0 standard
|
|
// requires this maximum to be at least 224, as discussed in the
|
|
// documentation of the GL_MAX_FRAGMENT_UNIFORM_VECTORS parameter
|
|
// here:
|
|
//
|
|
// https://registry.khronos.org/OpenGL-Refpages/es3.0/html/glGet.xhtml
|
|
//
|
|
// there are also other size limits. for example, on Aaron's
|
|
// machine, the the length of a float or genType array seems to be
|
|
// capped at 1024 elements
|
|
console::log_2(
|
|
&ctx.get_parameter(WebGl2RenderingContext::MAX_FRAGMENT_UNIFORM_VECTORS).unwrap(),
|
|
&JsValue::from("uniform vectors available")
|
|
);
|
|
|
|
// find the sphere program's vertex attribute
|
|
let viewport_position_attr = ctx.get_attrib_location(&sphere_program, "position") as u32;
|
|
|
|
// find the sphere program's uniforms
|
|
const SPHERE_MAX: usize = 200;
|
|
let sphere_cnt_loc = ctx.get_uniform_location(&sphere_program, "sphere_cnt");
|
|
let sphere_sp_locs = get_uniform_array_locations::<SPHERE_MAX>(
|
|
&ctx, &sphere_program, "sphere_list", Some("sp")
|
|
);
|
|
let sphere_lt_locs = get_uniform_array_locations::<SPHERE_MAX>(
|
|
&ctx, &sphere_program, "sphere_list", Some("lt")
|
|
);
|
|
let sphere_color_locs = get_uniform_array_locations::<SPHERE_MAX>(
|
|
&ctx, &sphere_program, "color_list", None
|
|
);
|
|
let sphere_highlight_locs = get_uniform_array_locations::<SPHERE_MAX>(
|
|
&ctx, &sphere_program, "highlight_list", None
|
|
);
|
|
let resolution_loc = ctx.get_uniform_location(&sphere_program, "resolution");
|
|
let shortdim_loc = ctx.get_uniform_location(&sphere_program, "shortdim");
|
|
let layer_threshold_loc = ctx.get_uniform_location(&sphere_program, "layer_threshold");
|
|
let debug_mode_loc = ctx.get_uniform_location(&sphere_program, "debug_mode");
|
|
|
|
// load the viewport vertex positions into a new vertex buffer object
|
|
const VERTEX_CNT: usize = 6;
|
|
let viewport_positions: [f32; 3*VERTEX_CNT] = [
|
|
// northwest triangle
|
|
-1.0, -1.0, 0.0,
|
|
-1.0, 1.0, 0.0,
|
|
1.0, 1.0, 0.0,
|
|
// southeast triangle
|
|
-1.0, -1.0, 0.0,
|
|
1.0, 1.0, 0.0,
|
|
1.0, -1.0, 0.0
|
|
];
|
|
let viewport_position_buffer = load_new_buffer(&ctx, &viewport_positions);
|
|
|
|
// find the point program's vertex attributes
|
|
let point_position_attr = ctx.get_attrib_location(&point_program, "position") as u32;
|
|
let point_color_attr = ctx.get_attrib_location(&point_program, "color") as u32;
|
|
let point_highlight_attr = ctx.get_attrib_location(&point_program, "highlight") as u32;
|
|
let point_selection_attr = ctx.get_attrib_location(&point_program, "selected") as u32;
|
|
|
|
// set up a repainting routine
|
|
let (_, start_animation_loop, _) = create_raf(move || {
|
|
// get the time step
|
|
let time = performance.now();
|
|
let time_step = 0.001*(time - last_time);
|
|
last_time = time;
|
|
|
|
// get the navigation state
|
|
let pitch_up_val = pitch_up.get();
|
|
let pitch_down_val = pitch_down.get();
|
|
let yaw_right_val = yaw_right.get();
|
|
let yaw_left_val = yaw_left.get();
|
|
let roll_ccw_val = roll_ccw.get();
|
|
let roll_cw_val = roll_cw.get();
|
|
let zoom_in_val = zoom_in.get();
|
|
let zoom_out_val = zoom_out.get();
|
|
let turntable_val = turntable.get(); /* BENCHMARKING */
|
|
|
|
// get the manipulation state
|
|
let translate_neg_x_val = translate_neg_x.get();
|
|
let translate_pos_x_val = translate_pos_x.get();
|
|
let translate_neg_y_val = translate_neg_y.get();
|
|
let translate_pos_y_val = translate_pos_y.get();
|
|
let translate_neg_z_val = translate_neg_z.get();
|
|
let translate_pos_z_val = translate_pos_z.get();
|
|
let shrink_neg_val = shrink_neg.get();
|
|
let shrink_pos_val = shrink_pos.get();
|
|
|
|
// update the assembly's orientation
|
|
let ang_vel = {
|
|
let pitch = pitch_up_val - pitch_down_val;
|
|
let yaw = yaw_right_val - yaw_left_val;
|
|
let roll = roll_ccw_val - roll_cw_val;
|
|
if pitch != 0.0 || yaw != 0.0 || roll != 0.0 {
|
|
ROT_SPEED * Vector3::new(-pitch, yaw, roll).normalize()
|
|
} else {
|
|
Vector3::zeros()
|
|
}
|
|
} /* BENCHMARKING */ + if turntable_val {
|
|
Vector3::new(0.0, TURNTABLE_SPEED, 0.0)
|
|
} else {
|
|
Vector3::zeros()
|
|
};
|
|
let mut rotation_sp = rotation.fixed_view_mut::<3, 3>(0, 0);
|
|
rotation_sp.copy_from(
|
|
Rotation3::from_scaled_axis(time_step * ang_vel).matrix()
|
|
);
|
|
orientation = &rotation * &orientation;
|
|
|
|
// update the assembly's location
|
|
let zoom = zoom_out_val - zoom_in_val;
|
|
location_z *= (time_step * ZOOM_SPEED * zoom).exp();
|
|
|
|
// manipulate the assembly
|
|
if state.selection.with(|sel| sel.len() == 1) {
|
|
let sel = state.selection.with(
|
|
|sel| sel.into_iter().next().unwrap().clone()
|
|
);
|
|
let translate_x = translate_pos_x_val - translate_neg_x_val;
|
|
let translate_y = translate_pos_y_val - translate_neg_y_val;
|
|
let translate_z = translate_pos_z_val - translate_neg_z_val;
|
|
let shrink = shrink_pos_val - shrink_neg_val;
|
|
let translating =
|
|
translate_x != 0.0
|
|
|| translate_y != 0.0
|
|
|| translate_z != 0.0;
|
|
if translating || shrink != 0.0 {
|
|
let elt_motion = {
|
|
let u = if translating {
|
|
TRANSLATION_SPEED * Vector3::new(
|
|
translate_x, translate_y, translate_z
|
|
).normalize()
|
|
} else {
|
|
Vector3::zeros()
|
|
};
|
|
time_step * DVector::from_column_slice(
|
|
&[u[0], u[1], u[2], SHRINKING_SPEED * shrink]
|
|
)
|
|
};
|
|
assembly_for_raf.deform(
|
|
vec![
|
|
ElementMotion {
|
|
element: sel,
|
|
velocity: elt_motion.as_view()
|
|
}
|
|
]
|
|
);
|
|
scene_changed.set(true);
|
|
}
|
|
}
|
|
|
|
if scene_changed.get() {
|
|
const SPACE_DIM: usize = 3;
|
|
const COLOR_SIZE: usize = 3;
|
|
|
|
/* INSTRUMENTS */
|
|
// measure mean frame interval
|
|
frames_since_last_sample += 1;
|
|
if frames_since_last_sample >= SAMPLE_PERIOD {
|
|
mean_frame_interval.set((time - last_sample_time) / (SAMPLE_PERIOD as f64));
|
|
last_sample_time = time;
|
|
frames_since_last_sample = 0;
|
|
}
|
|
|
|
// --- get the assembly ---
|
|
|
|
let mut scene = Scene::new();
|
|
|
|
// find the map from assembly space to world space
|
|
let location = {
|
|
let u = -location_z;
|
|
DMatrix::from_column_slice(5, 5, &[
|
|
1.0, 0.0, 0.0, 0.0, 0.0,
|
|
0.0, 1.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0, 1.0, 0.0, u,
|
|
0.0, 0.0, 2.0*u, 1.0, u*u,
|
|
0.0, 0.0, 0.0, 0.0, 1.0
|
|
])
|
|
};
|
|
let asm_to_world = &location * &orientation;
|
|
|
|
// set up the scene
|
|
state.assembly.elements.with_untracked(
|
|
|elts| for elt in elts {
|
|
let selected = state.selection.with(|sel| sel.contains(elt));
|
|
elt.show(&mut scene, selected);
|
|
}
|
|
);
|
|
let sphere_cnt = scene.spheres.len_i32();
|
|
|
|
// --- draw the spheres ---
|
|
|
|
// use the sphere rendering program
|
|
ctx.use_program(Some(&sphere_program));
|
|
|
|
// enable the sphere program's vertex attribute
|
|
ctx.enable_vertex_attrib_array(viewport_position_attr);
|
|
|
|
// write the spheres in world coordinates
|
|
let sphere_reps_world: Vec<_> = scene.spheres.representations.into_iter().map(
|
|
|rep| (&asm_to_world * rep).cast::<f32>()
|
|
).collect();
|
|
|
|
// set the resolution
|
|
let width = canvas.width() as f32;
|
|
let height = canvas.height() as f32;
|
|
ctx.uniform2f(resolution_loc.as_ref(), width, height);
|
|
ctx.uniform1f(shortdim_loc.as_ref(), width.min(height));
|
|
|
|
// pass the scene data
|
|
ctx.uniform1i(sphere_cnt_loc.as_ref(), sphere_cnt);
|
|
for n in 0..sphere_reps_world.len() {
|
|
let v = &sphere_reps_world[n];
|
|
ctx.uniform3fv_with_f32_array(
|
|
sphere_sp_locs[n].as_ref(),
|
|
v.rows(0, 3).as_slice()
|
|
);
|
|
ctx.uniform2fv_with_f32_array(
|
|
sphere_lt_locs[n].as_ref(),
|
|
v.rows(3, 2).as_slice()
|
|
);
|
|
ctx.uniform4fv_with_f32_array(
|
|
sphere_color_locs[n].as_ref(),
|
|
&scene.spheres.colors_with_opacity[n]
|
|
);
|
|
ctx.uniform1f(
|
|
sphere_highlight_locs[n].as_ref(),
|
|
scene.spheres.highlights[n]
|
|
);
|
|
}
|
|
|
|
// pass the display parameters
|
|
ctx.uniform1i(layer_threshold_loc.as_ref(), LAYER_THRESHOLD);
|
|
ctx.uniform1i(debug_mode_loc.as_ref(), DEBUG_MODE);
|
|
|
|
// bind the viewport vertex position buffer to the position
|
|
// attribute in the vertex shader
|
|
bind_to_attribute(&ctx, viewport_position_attr, SPACE_DIM as i32, &viewport_position_buffer);
|
|
|
|
// draw the scene
|
|
ctx.draw_arrays(WebGl2RenderingContext::TRIANGLES, 0, VERTEX_CNT as i32);
|
|
|
|
// disable the sphere program's vertex attribute
|
|
ctx.disable_vertex_attrib_array(viewport_position_attr);
|
|
|
|
// --- draw the points ---
|
|
|
|
if !scene.points.representations.is_empty() {
|
|
// use the point rendering program
|
|
ctx.use_program(Some(&point_program));
|
|
|
|
// enable the point program's vertex attributes
|
|
ctx.enable_vertex_attrib_array(point_position_attr);
|
|
ctx.enable_vertex_attrib_array(point_color_attr);
|
|
ctx.enable_vertex_attrib_array(point_highlight_attr);
|
|
ctx.enable_vertex_attrib_array(point_selection_attr);
|
|
|
|
// write the points in world coordinates
|
|
let asm_to_world_sp = asm_to_world.rows(0, SPACE_DIM);
|
|
let point_positions = DMatrix::from_columns(
|
|
&scene.points.representations.into_iter().map(
|
|
|rep| &asm_to_world_sp * rep
|
|
).collect::<Vec<_>>().as_slice()
|
|
).cast::<f32>();
|
|
|
|
// load the point positions and colors into new buffers and
|
|
// bind them to the corresponding attributes in the vertex
|
|
// shader
|
|
bind_new_buffer_to_attribute(&ctx, point_position_attr, SPACE_DIM as i32, point_positions.as_slice());
|
|
bind_new_buffer_to_attribute(&ctx, point_color_attr, (COLOR_SIZE + 1) as i32, scene.points.colors_with_opacity.concat().as_slice());
|
|
bind_new_buffer_to_attribute(&ctx, point_highlight_attr, 1 as i32, scene.points.highlights.as_slice());
|
|
bind_new_buffer_to_attribute(&ctx, point_selection_attr, 1 as i32, scene.points.selections.as_slice());
|
|
|
|
// draw the scene
|
|
ctx.draw_arrays(WebGl2RenderingContext::POINTS, 0, point_positions.ncols() as i32);
|
|
|
|
// disable the point program's vertex attributes
|
|
ctx.disable_vertex_attrib_array(point_position_attr);
|
|
ctx.disable_vertex_attrib_array(point_color_attr);
|
|
ctx.disable_vertex_attrib_array(point_highlight_attr);
|
|
ctx.disable_vertex_attrib_array(point_selection_attr);
|
|
}
|
|
|
|
// --- update the display state ---
|
|
|
|
// update the viewpoint
|
|
assembly_to_world.set(asm_to_world);
|
|
|
|
// clear the scene change flag
|
|
scene_changed.set(
|
|
pitch_up_val != 0.0
|
|
|| pitch_down_val != 0.0
|
|
|| yaw_left_val != 0.0
|
|
|| yaw_right_val != 0.0
|
|
|| roll_cw_val != 0.0
|
|
|| roll_ccw_val != 0.0
|
|
|| zoom_in_val != 0.0
|
|
|| zoom_out_val != 0.0
|
|
|| turntable_val /* BENCHMARKING */
|
|
);
|
|
} else {
|
|
frames_since_last_sample = 0;
|
|
mean_frame_interval.set(-1.0);
|
|
}
|
|
});
|
|
start_animation_loop();
|
|
});
|
|
|
|
let set_nav_signal = move |event: &KeyboardEvent, value: f64| {
|
|
let mut navigating = true;
|
|
let shift = event.shift_key();
|
|
match event.key().as_str() {
|
|
"ArrowUp" if shift => zoom_in.set(value),
|
|
"ArrowDown" if shift => zoom_out.set(value),
|
|
"ArrowUp" => pitch_up.set(value),
|
|
"ArrowDown" => pitch_down.set(value),
|
|
"ArrowRight" if shift => roll_cw.set(value),
|
|
"ArrowLeft" if shift => roll_ccw.set(value),
|
|
"ArrowRight" => yaw_right.set(value),
|
|
"ArrowLeft" => yaw_left.set(value),
|
|
_ => navigating = false
|
|
};
|
|
if navigating {
|
|
scene_changed.set(true);
|
|
event.prevent_default();
|
|
}
|
|
};
|
|
|
|
let set_manip_signal = move |event: &KeyboardEvent, value: f64| {
|
|
let mut manipulating = true;
|
|
let shift = event.shift_key();
|
|
match event.key().as_str() {
|
|
"d" | "D" => translate_pos_x.set(value),
|
|
"a" | "A" => translate_neg_x.set(value),
|
|
"w" | "W" if shift => translate_neg_z.set(value),
|
|
"s" | "S" if shift => translate_pos_z.set(value),
|
|
"w" | "W" => translate_pos_y.set(value),
|
|
"s" | "S" => translate_neg_y.set(value),
|
|
"]" | "}" => shrink_neg.set(value),
|
|
"[" | "{" => shrink_pos.set(value),
|
|
_ => manipulating = false
|
|
};
|
|
if manipulating {
|
|
event.prevent_default();
|
|
}
|
|
};
|
|
|
|
view! {
|
|
/* TO DO */
|
|
// switch back to integer-valued parameters when that becomes possible
|
|
// again
|
|
canvas(
|
|
ref=display,
|
|
id="display",
|
|
width="600",
|
|
height="600",
|
|
tabindex="0",
|
|
on:keydown=move |event: KeyboardEvent| {
|
|
if event.key() == "Shift" {
|
|
// swap navigation inputs
|
|
roll_cw.set(yaw_right.get());
|
|
roll_ccw.set(yaw_left.get());
|
|
zoom_in.set(pitch_up.get());
|
|
zoom_out.set(pitch_down.get());
|
|
yaw_right.set(0.0);
|
|
yaw_left.set(0.0);
|
|
pitch_up.set(0.0);
|
|
pitch_down.set(0.0);
|
|
|
|
// swap manipulation inputs
|
|
translate_pos_z.set(translate_neg_y.get());
|
|
translate_neg_z.set(translate_pos_y.get());
|
|
translate_pos_y.set(0.0);
|
|
translate_neg_y.set(0.0);
|
|
} else {
|
|
if event.key() == "Enter" { /* BENCHMARKING */
|
|
turntable.set_fn(|turn| !turn);
|
|
scene_changed.set(true);
|
|
}
|
|
set_nav_signal(&event, 1.0);
|
|
set_manip_signal(&event, 1.0);
|
|
}
|
|
},
|
|
on:keyup=move |event: KeyboardEvent| {
|
|
if event.key() == "Shift" {
|
|
// swap navigation inputs
|
|
yaw_right.set(roll_cw.get());
|
|
yaw_left.set(roll_ccw.get());
|
|
pitch_up.set(zoom_in.get());
|
|
pitch_down.set(zoom_out.get());
|
|
roll_cw.set(0.0);
|
|
roll_ccw.set(0.0);
|
|
zoom_in.set(0.0);
|
|
zoom_out.set(0.0);
|
|
|
|
// swap manipulation inputs
|
|
translate_pos_y.set(translate_neg_z.get());
|
|
translate_neg_y.set(translate_pos_z.get());
|
|
translate_pos_z.set(0.0);
|
|
translate_neg_z.set(0.0);
|
|
} else {
|
|
set_nav_signal(&event, 0.0);
|
|
set_manip_signal(&event, 0.0);
|
|
}
|
|
},
|
|
on:blur=move |_| {
|
|
pitch_up.set(0.0);
|
|
pitch_down.set(0.0);
|
|
yaw_right.set(0.0);
|
|
yaw_left.set(0.0);
|
|
roll_ccw.set(0.0);
|
|
roll_cw.set(0.0);
|
|
},
|
|
on:click=move |event: MouseEvent| {
|
|
// find the nearest element along the pointer direction
|
|
let (dir, pixel_size) = event_dir(&event);
|
|
console::log_1(&JsValue::from(dir.to_string()));
|
|
let mut clicked: Option<(Rc<dyn Element>, f64)> = None;
|
|
let tangible_elts = state.assembly.elements
|
|
.get_clone_untracked()
|
|
.into_iter()
|
|
.filter(|elt| !elt.ghost().get());
|
|
for elt in tangible_elts {
|
|
match assembly_to_world.with(|asm_to_world| elt.cast(dir, asm_to_world, pixel_size)) {
|
|
Some(depth) => match clicked {
|
|
Some((_, best_depth)) => {
|
|
if depth < best_depth {
|
|
clicked = Some((elt, depth))
|
|
}
|
|
},
|
|
None => clicked = Some((elt, depth))
|
|
}
|
|
None => ()
|
|
};
|
|
}
|
|
|
|
// if we clicked something, select it
|
|
match clicked {
|
|
Some((elt, _)) => state.select(&elt, event.shift_key()),
|
|
None => state.selection.update(|sel| sel.clear())
|
|
};
|
|
}
|
|
)
|
|
}
|
|
} |