dyna3/app-proto/src/engine.rs
Aaron Fenyes 679c421d04 Encapsulate realization results
In the process, spruce up our realization diagnostics logging and factor
out some of the repetitive code in the examples, because we're already
changing those parts of the code to adapt them to the new encapsulation.

This commit changes the example output format. I've checked by hand that
the output is rearranged but not meaningfully changed.
2025-06-26 22:42:02 -07:00

995 lines
No EOL
37 KiB
Rust

use lazy_static::lazy_static;
use nalgebra::{Const, DMatrix, DVector, DVectorView, Dyn, SymmetricEigen};
use std::fmt::{Display, Error, Formatter};
use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */
// --- elements ---
pub fn point(x: f64, y: f64, z: f64) -> DVector<f64> {
DVector::from_column_slice(&[x, y, z, 0.5, 0.5*(x*x + y*y + z*z)])
}
// the sphere with the given center and radius, with inward-pointing normals
pub fn sphere(center_x: f64, center_y: f64, center_z: f64, radius: f64) -> DVector<f64> {
let center_norm_sq = center_x * center_x + center_y * center_y + center_z * center_z;
DVector::from_column_slice(&[
center_x / radius,
center_y / radius,
center_z / radius,
0.5 / radius,
0.5 * (center_norm_sq / radius - radius)
])
}
// the sphere of curvature `curv` whose closest point to the origin has position
// `off * dir` and normal `dir`, where `dir` is a unit vector. setting the
// curvature to zero gives a plane
pub fn sphere_with_offset(dir_x: f64, dir_y: f64, dir_z: f64, off: f64, curv: f64) -> DVector<f64> {
let norm_sp = 1.0 + off * curv;
DVector::from_column_slice(&[
norm_sp * dir_x,
norm_sp * dir_y,
norm_sp * dir_z,
0.5 * curv,
off * (1.0 + 0.5 * off * curv)
])
}
// project a sphere's representation vector to the normalization variety by
// contracting toward the last coordinate axis
pub fn project_sphere_to_normalized(rep: &mut DVector<f64>) {
let q_sp = rep.fixed_rows::<3>(0).norm_squared();
let half_q_lt = -2.0 * rep[3] * rep[4];
let half_q_lt_sq = half_q_lt * half_q_lt;
let scaling = half_q_lt + (q_sp + half_q_lt_sq).sqrt();
rep.fixed_rows_mut::<4>(0).scale_mut(1.0 / scaling);
}
// normalize a point's representation vector by scaling
pub fn project_point_to_normalized(rep: &mut DVector<f64>) {
rep.scale_mut(0.5 / rep[3]);
}
// given a sphere's representation vector, change the sphere's half-curvature to
// `half-curv` and then restore normalization by contracting the representation
// vector toward the curvature axis
pub fn change_half_curvature(rep: &mut DVector<f64>, half_curv: f64) {
// set the sphere's half-curvature to the desired value
rep[3] = half_curv;
// restore normalization by contracting toward the curvature axis
const SIZE_THRESHOLD: f64 = 1e-9;
let half_q_lt = -2.0 * half_curv * rep[4];
let half_q_lt_sq = half_q_lt * half_q_lt;
let mut spatial = rep.fixed_rows_mut::<3>(0);
let q_sp = spatial.norm_squared();
if q_sp < SIZE_THRESHOLD && half_q_lt_sq < SIZE_THRESHOLD {
spatial.copy_from_slice(
&[0.0, 0.0, (1.0 - 2.0 * half_q_lt).sqrt()]
);
} else {
let scaling = half_q_lt + (q_sp + half_q_lt_sq).sqrt();
spatial.scale_mut(1.0 / scaling);
rep[4] /= scaling;
}
/* DEBUG */
// verify normalization
let rep_for_debug = rep.clone();
console::log_1(&JsValue::from(
format!(
"Sphere self-product after curvature change: {}",
rep_for_debug.dot(&(&*Q * &rep_for_debug))
)
));
}
// --- partial matrices ---
pub struct MatrixEntry {
index: (usize, usize),
value: f64
}
pub struct PartialMatrix(Vec<MatrixEntry>);
impl PartialMatrix {
pub fn new() -> PartialMatrix {
PartialMatrix(Vec::<MatrixEntry>::new())
}
pub fn push(&mut self, row: usize, col: usize, value: f64) {
let PartialMatrix(entries) = self;
entries.push(MatrixEntry { index: (row, col), value: value });
}
pub fn push_sym(&mut self, row: usize, col: usize, value: f64) {
self.push(row, col, value);
if row != col {
self.push(col, row, value);
}
}
fn freeze(&self, a: &DMatrix<f64>) -> DMatrix<f64> {
let mut result = a.clone();
for &MatrixEntry { index, value } in self {
result[index] = value;
}
result
}
fn proj(&self, a: &DMatrix<f64>) -> DMatrix<f64> {
let mut result = DMatrix::<f64>::zeros(a.nrows(), a.ncols());
for &MatrixEntry { index, .. } in self {
result[index] = a[index];
}
result
}
fn sub_proj(&self, rhs: &DMatrix<f64>) -> DMatrix<f64> {
let mut result = DMatrix::<f64>::zeros(rhs.nrows(), rhs.ncols());
for &MatrixEntry { index, value } in self {
result[index] = value - rhs[index];
}
result
}
}
impl Display for PartialMatrix {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
for &MatrixEntry { index: (row, col), value } in self {
writeln!(f, " {row} {col} {value}")?;
}
Ok(())
}
}
impl IntoIterator for PartialMatrix {
type Item = MatrixEntry;
type IntoIter = std::vec::IntoIter<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
let PartialMatrix(entries) = self;
entries.into_iter()
}
}
impl<'a> IntoIterator for &'a PartialMatrix {
type Item = &'a MatrixEntry;
type IntoIter = std::slice::Iter<'a, MatrixEntry>;
fn into_iter(self) -> Self::IntoIter {
let PartialMatrix(entries) = self;
entries.into_iter()
}
}
// --- configuration subspaces ---
#[derive(Clone)]
pub struct ConfigSubspace {
assembly_dim: usize,
basis_std: Vec<DMatrix<f64>>,
basis_proj: Vec<DMatrix<f64>>
}
impl ConfigSubspace {
pub fn zero(assembly_dim: usize) -> ConfigSubspace {
ConfigSubspace {
assembly_dim: assembly_dim,
basis_proj: Vec::new(),
basis_std: Vec::new()
}
}
// approximate the kernel of a symmetric endomorphism of the configuration
// space for `assembly_dim` elements. we consider an eigenvector to be part
// of the kernel if its eigenvalue is smaller than the constant `THRESHOLD`
fn symmetric_kernel(a: DMatrix<f64>, proj_to_std: DMatrix<f64>, assembly_dim: usize) -> ConfigSubspace {
// find a basis for the kernel. the basis is expressed in the projection
// coordinates, and it's orthonormal with respect to the projection
// inner product
const THRESHOLD: f64 = 0.1;
let eig = SymmetricEigen::new(proj_to_std.tr_mul(&a) * &proj_to_std);
let eig_vecs = eig.eigenvectors.column_iter();
let eig_pairs = eig.eigenvalues.iter().zip(eig_vecs);
let basis_proj = DMatrix::from_columns(
eig_pairs.filter_map(
|(λ, v)| (λ.abs() < THRESHOLD).then_some(v)
).collect::<Vec<_>>().as_slice()
);
/* DEBUG */
// print the eigenvalues
#[cfg(all(target_family = "wasm", target_os = "unknown"))]
console::log_1(&JsValue::from(
format!("Eigenvalues used to find kernel:{}", eig.eigenvalues)
));
// express the basis in the standard coordinates
let basis_std = proj_to_std * &basis_proj;
const ELEMENT_DIM: usize = 5;
const UNIFORM_DIM: usize = 4;
ConfigSubspace {
assembly_dim: assembly_dim,
basis_std: basis_std.column_iter().map(
|v| Into::<DMatrix<f64>>::into(
v.reshape_generic(Dyn(ELEMENT_DIM), Dyn(assembly_dim))
)
).collect(),
basis_proj: basis_proj.column_iter().map(
|v| Into::<DMatrix<f64>>::into(
v.reshape_generic(Dyn(UNIFORM_DIM), Dyn(assembly_dim))
)
).collect()
}
}
pub fn dim(&self) -> usize {
self.basis_std.len()
}
pub fn assembly_dim(&self) -> usize {
self.assembly_dim
}
// find the projection onto this subspace of the motion where the element
// with the given column index has velocity `v`. the velocity is given in
// projection coordinates, and the projection is done with respect to the
// projection inner product
pub fn proj(&self, v: &DVectorView<f64>, column_index: usize) -> DMatrix<f64> {
if self.dim() == 0 {
const ELEMENT_DIM: usize = 5;
DMatrix::zeros(ELEMENT_DIM, self.assembly_dim)
} else {
self.basis_proj.iter().zip(self.basis_std.iter()).map(
|(b_proj, b_std)| b_proj.column(column_index).dot(&v) * b_std
).sum()
}
}
}
// --- descent history ---
pub struct DescentHistory {
pub config: Vec<DMatrix<f64>>,
pub scaled_loss: Vec<f64>,
pub neg_grad: Vec<DMatrix<f64>>,
pub min_eigval: Vec<f64>,
pub base_step: Vec<DMatrix<f64>>,
pub backoff_steps: Vec<i32>
}
impl DescentHistory {
fn new() -> DescentHistory {
DescentHistory {
config: Vec::<DMatrix<f64>>::new(),
scaled_loss: Vec::<f64>::new(),
neg_grad: Vec::<DMatrix<f64>>::new(),
min_eigval: Vec::<f64>::new(),
base_step: Vec::<DMatrix<f64>>::new(),
backoff_steps: Vec::<i32>::new(),
}
}
}
// --- constraint problems ---
pub struct ConstraintProblem {
pub gram: PartialMatrix,
pub frozen: PartialMatrix,
pub guess: DMatrix<f64>,
}
impl ConstraintProblem {
pub fn new(element_count: usize) -> ConstraintProblem {
const ELEMENT_DIM: usize = 5;
ConstraintProblem {
gram: PartialMatrix::new(),
frozen: PartialMatrix::new(),
guess: DMatrix::<f64>::zeros(ELEMENT_DIM, element_count)
}
}
#[cfg(feature = "dev")]
pub fn from_guess(guess_columns: &[DVector<f64>]) -> ConstraintProblem {
ConstraintProblem {
gram: PartialMatrix::new(),
frozen: PartialMatrix::new(),
guess: DMatrix::from_columns(guess_columns)
}
}
}
// --- gram matrix realization ---
// the Lorentz form
lazy_static! {
pub static ref Q: DMatrix<f64> = DMatrix::from_row_slice(5, 5, &[
1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, -2.0,
0.0, 0.0, 0.0, -2.0, 0.0
]);
}
struct SearchState {
config: DMatrix<f64>,
err_proj: DMatrix<f64>,
loss: f64
}
impl SearchState {
fn from_config(gram: &PartialMatrix, config: DMatrix<f64>) -> SearchState {
let err_proj = gram.sub_proj(&(config.tr_mul(&*Q) * &config));
let loss = err_proj.norm_squared();
SearchState {
config: config,
err_proj: err_proj,
loss: loss
}
}
}
fn basis_matrix(index: (usize, usize), nrows: usize, ncols: usize) -> DMatrix<f64> {
let mut result = DMatrix::<f64>::zeros(nrows, ncols);
result[index] = 1.0;
result
}
// given a normalized vector `v` representing an element, build a basis for the
// element's linear configuration space consisting of:
// - the unit translation motions of the element
// - the unit shrinking motion of the element, if it's a sphere
// - one or two vectors whose coefficients vanish on the tangent space of the
// normalization variety
pub fn local_unif_to_std(v: DVectorView<f64>) -> DMatrix<f64> {
const ELEMENT_DIM: usize = 5;
const UNIFORM_DIM: usize = 4;
let curv = 2.0*v[3];
if v.dot(&(&*Q * v)) < 0.5 {
// `v` represents a point. the normalization condition says that the
// curvature component of `v` is 1/2
DMatrix::from_column_slice(ELEMENT_DIM, UNIFORM_DIM, &[
curv, 0.0, 0.0, 0.0, v[0],
0.0, curv, 0.0, 0.0, v[1],
0.0, 0.0, curv, 0.0, v[2],
0.0, 0.0, 0.0, 0.0, 1.0
])
} else {
// `v` represents a sphere. the normalization condition says that the
// Lorentz product of `v` with itself is 1
DMatrix::from_column_slice(ELEMENT_DIM, UNIFORM_DIM, &[
curv, 0.0, 0.0, 0.0, v[0],
0.0, curv, 0.0, 0.0, v[1],
0.0, 0.0, curv, 0.0, v[2],
curv*v[0], curv*v[1], curv*v[2], curv*v[3], curv*v[4] + 1.0
])
}
}
// use backtracking line search to find a better configuration
fn seek_better_config(
gram: &PartialMatrix,
state: &SearchState,
base_step: &DMatrix<f64>,
base_target_improvement: f64,
min_efficiency: f64,
backoff: f64,
max_backoff_steps: i32
) -> Option<(SearchState, i32)> {
let mut rate = 1.0;
for backoff_steps in 0..max_backoff_steps {
let trial_config = &state.config + rate * base_step;
let trial_state = SearchState::from_config(gram, trial_config);
let improvement = state.loss - trial_state.loss;
if improvement >= min_efficiency * rate * base_target_improvement {
return Some((trial_state, backoff_steps));
}
rate *= backoff;
}
None
}
pub struct Realization {
pub config: DMatrix<f64>,
pub tangent: ConfigSubspace
}
pub struct RealizationResult {
pub result: Result<Realization, String>,
pub history: DescentHistory
}
// seek a matrix `config` that matches the partial matrix `problem.frozen` and
// has `config' * Q * config` matching the partial matrix `problem.gram`. start
// at `problem.guess`, set the frozen entries to their desired values, and then
// use a regularized Newton's method to seek the desired Gram matrix
pub fn realize_gram(
problem: &ConstraintProblem,
scaled_tol: f64,
min_efficiency: f64,
backoff: f64,
reg_scale: f64,
max_descent_steps: i32,
max_backoff_steps: i32
) -> RealizationResult {
// destructure the problem data
let ConstraintProblem {
gram, guess, frozen
} = problem;
// start the descent history
let mut history = DescentHistory::new();
// find the dimension of the search space
let element_dim = guess.nrows();
let assembly_dim = guess.ncols();
let total_dim = element_dim * assembly_dim;
// scale the tolerance
let scale_adjustment = (gram.0.len() as f64).sqrt();
let tol = scale_adjustment * scaled_tol;
// convert the frozen indices to stacked format
let frozen_stacked: Vec<usize> = frozen.into_iter().map(
|MatrixEntry { index: (row, col), .. }| col*element_dim + row
).collect();
// use a regularized Newton's method with backtracking
let mut state = SearchState::from_config(gram, frozen.freeze(guess));
let mut hess = DMatrix::zeros(element_dim, assembly_dim);
for _ in 0..max_descent_steps {
// find the negative gradient of the loss function
let neg_grad = 4.0 * &*Q * &state.config * &state.err_proj;
let mut neg_grad_stacked = neg_grad.clone().reshape_generic(Dyn(total_dim), Const::<1>);
history.neg_grad.push(neg_grad.clone());
// find the negative Hessian of the loss function
let mut hess_cols = Vec::<DVector<f64>>::with_capacity(total_dim);
for col in 0..assembly_dim {
for row in 0..element_dim {
let index = (row, col);
let basis_mat = basis_matrix(index, element_dim, assembly_dim);
let neg_d_err =
basis_mat.tr_mul(&*Q) * &state.config
+ state.config.tr_mul(&*Q) * &basis_mat;
let neg_d_err_proj = gram.proj(&neg_d_err);
let deriv_grad = 4.0 * &*Q * (
-&basis_mat * &state.err_proj
+ &state.config * &neg_d_err_proj
);
hess_cols.push(deriv_grad.reshape_generic(Dyn(total_dim), Const::<1>));
}
}
hess = DMatrix::from_columns(hess_cols.as_slice());
// regularize the Hessian
let min_eigval = hess.symmetric_eigenvalues().min();
if min_eigval <= 0.0 {
hess -= reg_scale * min_eigval * DMatrix::identity(total_dim, total_dim);
}
history.min_eigval.push(min_eigval);
// project the negative gradient and negative Hessian onto the
// orthogonal complement of the frozen subspace
let zero_col = DVector::zeros(total_dim);
let zero_row = zero_col.transpose();
for &k in &frozen_stacked {
neg_grad_stacked[k] = 0.0;
hess.set_row(k, &zero_row);
hess.set_column(k, &zero_col);
hess[(k, k)] = 1.0;
}
// stop if the loss is tolerably low
history.config.push(state.config.clone());
history.scaled_loss.push(state.loss / scale_adjustment);
if state.loss < tol { break; }
// compute the Newton step
/*
we need to either handle or eliminate the case where the minimum
eigenvalue of the Hessian is zero, so the regularized Hessian is
singular. right now, this causes the Cholesky decomposition to return
`None`, leading to a panic when we unrap
*/
let base_step_stacked = hess.clone().cholesky().unwrap().solve(&neg_grad_stacked);
let base_step = base_step_stacked.reshape_generic(Dyn(element_dim), Dyn(assembly_dim));
history.base_step.push(base_step.clone());
// use backtracking line search to find a better configuration
if let Some((better_state, backoff_steps)) = seek_better_config(
gram, &state, &base_step, neg_grad.dot(&base_step),
min_efficiency, backoff, max_backoff_steps
) {
state = better_state;
history.backoff_steps.push(backoff_steps);
} else {
return RealizationResult {
result: Err("Line search failed".to_string()),
history
}
};
}
let result = if state.loss < tol {
// express the uniform basis in the standard basis
const UNIFORM_DIM: usize = 4;
let total_dim_unif = UNIFORM_DIM * assembly_dim;
let mut unif_to_std = DMatrix::<f64>::zeros(total_dim, total_dim_unif);
for n in 0..assembly_dim {
let block_start = (element_dim * n, UNIFORM_DIM * n);
unif_to_std
.view_mut(block_start, (element_dim, UNIFORM_DIM))
.copy_from(&local_unif_to_std(state.config.column(n)));
}
// find the kernel of the Hessian. give it the uniform inner product
let tangent = ConfigSubspace::symmetric_kernel(hess, unif_to_std, assembly_dim);
Ok(Realization { config: state.config, tangent })
} else {
Err("Failed to reach target accuracy".to_string())
};
RealizationResult{ result, history }
}
// --- tests ---
#[cfg(feature = "dev")]
pub mod examples {
use std::f64::consts::PI;
use super::*;
// this problem is from a sangaku by Irisawa Shintarō Hiroatsu. the article
// below includes a nice translation of the problem statement, which was
// recorded in Uchida Itsumi's book _Kokon sankan_ (_Mathematics, Past and
// Present_)
//
// "Japan's 'Wasan' Mathematical Tradition", by Abe Haruki
// https://www.nippon.com/en/japan-topics/c12801/
//
pub fn realize_irisawa_hexlet(scaled_tol: f64) -> RealizationResult {
let mut problem = ConstraintProblem::from_guess(
[
sphere(0.0, 0.0, 0.0, 15.0),
sphere(0.0, 0.0, -9.0, 5.0),
sphere(0.0, 0.0, 11.0, 3.0)
].into_iter().chain(
(1..=6).map(
|k| {
let ang = (k as f64) * PI/3.0;
sphere(9.0 * ang.cos(), 9.0 * ang.sin(), 0.0, 2.5)
}
)
).collect::<Vec<_>>().as_slice()
);
for s in 0..9 {
// each sphere is represented by a spacelike vector
problem.gram.push_sym(s, s, 1.0);
// the circumscribing sphere is tangent to all of the other
// spheres, with matching orientation
if s > 0 {
problem.gram.push_sym(0, s, 1.0);
}
if s > 2 {
// each chain sphere is tangent to the "sun" and "moon"
// spheres, with opposing orientation
for n in 1..3 {
problem.gram.push_sym(s, n, -1.0);
}
// each chain sphere is tangent to the next chain sphere,
// with opposing orientation
let s_next = 3 + (s-2) % 6;
problem.gram.push_sym(s, s_next, -1.0);
}
}
// the frozen entries fix the radii of the circumscribing sphere, the
// "sun" and "moon" spheres, and one of the chain spheres
for k in 0..4 {
problem.frozen.push(3, k, problem.guess[(3, k)]);
}
realize_gram(&problem, scaled_tol, 0.5, 0.9, 1.1, 200, 110)
}
// set up a kaleidocycle, made of points with fixed distances between them,
// and find its tangent space
pub fn realize_kaleidocycle(scaled_tol: f64) -> RealizationResult {
const N_HINGES: usize = 6;
let mut problem = ConstraintProblem::from_guess(
(0..N_HINGES).step_by(2).flat_map(
|n| {
let ang_hor = (n as f64) * PI/3.0;
let ang_vert = ((n + 1) as f64) * PI/3.0;
let x_vert = ang_vert.cos();
let y_vert = ang_vert.sin();
[
point(0.0, 0.0, 0.0),
point(ang_hor.cos(), ang_hor.sin(), 0.0),
point(x_vert, y_vert, -0.5),
point(x_vert, y_vert, 0.5)
]
}
).collect::<Vec<_>>().as_slice()
);
const N_POINTS: usize = 2 * N_HINGES;
for block in (0..N_POINTS).step_by(2) {
let block_next = (block + 2) % N_POINTS;
for j in 0..2 {
// diagonal and hinge edges
for k in j..2 {
problem.gram.push_sym(block + j, block + k, if j == k { 0.0 } else { -0.5 });
}
// non-hinge edges
for k in 0..2 {
problem.gram.push_sym(block + j, block_next + k, -0.625);
}
}
}
for k in 0..N_POINTS {
problem.frozen.push(3, k, problem.guess[(3, k)])
}
realize_gram(&problem, scaled_tol, 0.5, 0.9, 1.1, 200, 110)
}
}
#[cfg(test)]
mod tests {
use nalgebra::Vector3;
use std::{f64::consts::{FRAC_1_SQRT_2, PI}, iter};
use super::{*, examples::*};
#[test]
fn freeze_test() {
let frozen = PartialMatrix(vec![
MatrixEntry { index: (0, 0), value: 14.0 },
MatrixEntry { index: (0, 2), value: 28.0 },
MatrixEntry { index: (1, 1), value: 42.0 },
MatrixEntry { index: (1, 2), value: 49.0 }
]);
let config = DMatrix::<f64>::from_row_slice(2, 3, &[
1.0, 2.0, 3.0,
4.0, 5.0, 6.0
]);
let expected_result = DMatrix::<f64>::from_row_slice(2, 3, &[
14.0, 2.0, 28.0,
4.0, 42.0, 49.0
]);
assert_eq!(frozen.freeze(&config), expected_result);
}
#[test]
fn sub_proj_test() {
let target = PartialMatrix(vec![
MatrixEntry { index: (0, 0), value: 19.0 },
MatrixEntry { index: (0, 2), value: 39.0 },
MatrixEntry { index: (1, 1), value: 59.0 },
MatrixEntry { index: (1, 2), value: 69.0 }
]);
let attempt = DMatrix::<f64>::from_row_slice(2, 3, &[
1.0, 2.0, 3.0,
4.0, 5.0, 6.0
]);
let expected_result = DMatrix::<f64>::from_row_slice(2, 3, &[
18.0, 0.0, 36.0,
0.0, 54.0, 63.0
]);
assert_eq!(target.sub_proj(&attempt), expected_result);
}
#[test]
fn zero_loss_test() {
let mut gram = PartialMatrix::new();
for j in 0..3 {
for k in 0..3 {
gram.push(j, k, if j == k { 1.0 } else { -1.0 });
}
}
let config = {
let a = 0.75_f64.sqrt();
DMatrix::from_columns(&[
sphere(1.0, 0.0, 0.0, a),
sphere(-0.5, a, 0.0, a),
sphere(-0.5, -a, 0.0, a)
])
};
let state = SearchState::from_config(&gram, config);
assert!(state.loss.abs() < f64::EPSILON);
}
/* TO DO */
// at the frozen indices, the optimization steps should have exact zeros,
// and the realized configuration should have the desired values
#[test]
fn frozen_entry_test() {
let mut problem = ConstraintProblem::from_guess(&[
point(0.0, 0.0, 2.0),
sphere(0.0, 0.0, 0.0, 0.95)
]);
for j in 0..2 {
for k in j..2 {
problem.gram.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 });
}
}
problem.frozen.push(3, 0, problem.guess[(3, 0)]);
problem.frozen.push(3, 1, 0.5);
let RealizationResult { result, history } = realize_gram(
&problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
let config = result.unwrap().config;
for base_step in history.base_step.into_iter() {
for &MatrixEntry { index, .. } in &problem.frozen {
assert_eq!(base_step[index], 0.0);
}
}
for MatrixEntry { index, value } in problem.frozen {
assert_eq!(config[index], value);
}
}
#[test]
fn irisawa_hexlet_test() {
// solve Irisawa's problem
const SCALED_TOL: f64 = 1.0e-12;
let config = realize_irisawa_hexlet(SCALED_TOL).result.unwrap().config;
// check against Irisawa's solution
let entry_tol = SCALED_TOL.sqrt();
let solution_diams = [30.0, 10.0, 6.0, 5.0, 15.0, 10.0, 3.75, 2.5, 2.0 + 8.0/11.0];
for (k, diam) in solution_diams.into_iter().enumerate() {
assert!((config[(3, k)] - 1.0 / diam).abs() < entry_tol);
}
}
#[test]
fn tangent_test_three_spheres() {
const SCALED_TOL: f64 = 1.0e-12;
const ELEMENT_DIM: usize = 5;
let mut problem = ConstraintProblem::from_guess(&[
sphere(0.0, 0.0, 0.0, -2.0),
sphere(0.0, 0.0, 1.0, 1.0),
sphere(0.0, 0.0, -1.0, 1.0)
]);
for j in 0..3 {
for k in j..3 {
problem.gram.push_sym(j, k, if j == k { 1.0 } else { -1.0 });
}
}
for n in 0..ELEMENT_DIM {
problem.frozen.push(n, 0, problem.guess[(n, 0)]);
}
let RealizationResult { result, history } = realize_gram(
&problem, SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
);
let Realization { config, tangent } = result.unwrap();
assert_eq!(config, problem.guess);
assert_eq!(history.scaled_loss.len(), 1);
// list some motions that should form a basis for the tangent space of
// the solution variety
const UNIFORM_DIM: usize = 4;
let element_dim = problem.guess.nrows();
let assembly_dim = problem.guess.ncols();
let tangent_motions_unif = vec![
basis_matrix((0, 1), UNIFORM_DIM, assembly_dim),
basis_matrix((1, 1), UNIFORM_DIM, assembly_dim),
basis_matrix((0, 2), UNIFORM_DIM, assembly_dim),
basis_matrix((1, 2), UNIFORM_DIM, assembly_dim),
DMatrix::<f64>::from_column_slice(UNIFORM_DIM, assembly_dim, &[
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, -0.5, -0.5,
0.0, 0.0, -0.5, 0.5
])
];
let tangent_motions_std = vec![
basis_matrix((0, 1), element_dim, assembly_dim),
basis_matrix((1, 1), element_dim, assembly_dim),
basis_matrix((0, 2), element_dim, assembly_dim),
basis_matrix((1, 2), element_dim, assembly_dim),
DMatrix::<f64>::from_column_slice(element_dim, assembly_dim, &[
0.0, 0.0, 0.0, 0.00, 0.0,
0.0, 0.0, -1.0, -0.25, -1.0,
0.0, 0.0, -1.0, 0.25, 1.0
])
];
// confirm that the dimension of the tangent space is no greater than
// expected
assert_eq!(tangent.basis_std.len(), tangent_motions_std.len());
// confirm that the tangent space contains all the motions we expect it
// to. since we've already bounded the dimension of the tangent space,
// this confirms that the tangent space is what we expect it to be
let tol_sq = ((element_dim * assembly_dim) as f64) * SCALED_TOL * SCALED_TOL;
for (motion_unif, motion_std) in tangent_motions_unif.into_iter().zip(tangent_motions_std) {
let motion_proj: DMatrix<_> = motion_unif.column_iter().enumerate().map(
|(k, v)| tangent.proj(&v, k)
).sum();
assert!((motion_std - motion_proj).norm_squared() < tol_sq);
}
}
fn translation_motion_unif(vel: &Vector3<f64>, assembly_dim: usize) -> Vec<DVector<f64>> {
let mut elt_motion = DVector::zeros(4);
elt_motion.fixed_rows_mut::<3>(0).copy_from(vel);
iter::repeat(elt_motion).take(assembly_dim).collect()
}
fn rotation_motion_unif(ang_vel: &Vector3<f64>, points: Vec<DVectorView<f64>>) -> Vec<DVector<f64>> {
points.into_iter().map(
|pt| {
let vel = ang_vel.cross(&pt.fixed_rows::<3>(0));
let mut elt_motion = DVector::zeros(4);
elt_motion.fixed_rows_mut::<3>(0).copy_from(&vel);
elt_motion
}
).collect()
}
#[test]
fn tangent_test_kaleidocycle() {
// set up a kaleidocycle and find its tangent space
const SCALED_TOL: f64 = 1.0e-12;
let RealizationResult { result, history } = realize_kaleidocycle(SCALED_TOL);
let Realization { config, tangent } = result.unwrap();
assert_eq!(history.scaled_loss.len(), 1);
// list some motions that should form a basis for the tangent space of
// the solution variety
const N_HINGES: usize = 6;
let element_dim = config.nrows();
let assembly_dim = config.ncols();
let tangent_motions_unif = vec![
// the translations along the coordinate axes
translation_motion_unif(&Vector3::new(1.0, 0.0, 0.0), assembly_dim),
translation_motion_unif(&Vector3::new(0.0, 1.0, 0.0), assembly_dim),
translation_motion_unif(&Vector3::new(0.0, 0.0, 1.0), assembly_dim),
// the rotations about the coordinate axes
rotation_motion_unif(&Vector3::new(1.0, 0.0, 0.0), config.column_iter().collect()),
rotation_motion_unif(&Vector3::new(0.0, 1.0, 0.0), config.column_iter().collect()),
rotation_motion_unif(&Vector3::new(0.0, 0.0, 1.0), config.column_iter().collect()),
// the twist motion. more precisely: a motion that keeps the center
// of mass stationary and preserves the distances between the
// vertices to first order. this has to be the twist as long as:
// - twisting is the kaleidocycle's only internal degree of
// freedom
// - every first-order motion of the kaleidocycle comes from an
// actual motion
(0..N_HINGES).step_by(2).flat_map(
|n| {
let ang_vert = ((n + 1) as f64) * PI/3.0;
let vel_vert_x = 4.0 * ang_vert.cos();
let vel_vert_y = 4.0 * ang_vert.sin();
[
DVector::from_column_slice(&[0.0, 0.0, 5.0, 0.0]),
DVector::from_column_slice(&[0.0, 0.0, 1.0, 0.0]),
DVector::from_column_slice(&[-vel_vert_x, -vel_vert_y, -3.0, 0.0]),
DVector::from_column_slice(&[vel_vert_x, vel_vert_y, -3.0, 0.0])
]
}
).collect::<Vec<_>>()
];
let tangent_motions_std = tangent_motions_unif.iter().map(
|motion| DMatrix::from_columns(
&config.column_iter().zip(motion).map(
|(v, elt_motion)| local_unif_to_std(v) * elt_motion
).collect::<Vec<_>>()
)
).collect::<Vec<_>>();
// confirm that the dimension of the tangent space is no greater than
// expected
assert_eq!(tangent.basis_std.len(), tangent_motions_unif.len());
// confirm that the tangent space contains all the motions we expect it
// to. since we've already bounded the dimension of the tangent space,
// this confirms that the tangent space is what we expect it to be
let tol_sq = ((element_dim * assembly_dim) as f64) * SCALED_TOL * SCALED_TOL;
for (motion_unif, motion_std) in tangent_motions_unif.into_iter().zip(tangent_motions_std) {
let motion_proj: DMatrix<_> = motion_unif.into_iter().enumerate().map(
|(k, v)| tangent.proj(&v.as_view(), k)
).sum();
assert!((motion_std - motion_proj).norm_squared() < tol_sq);
}
}
fn translation(dis: Vector3<f64>) -> DMatrix<f64> {
const ELEMENT_DIM: usize = 5;
DMatrix::from_column_slice(ELEMENT_DIM, ELEMENT_DIM, &[
1.0, 0.0, 0.0, 0.0, dis[0],
0.0, 1.0, 0.0, 0.0, dis[1],
0.0, 0.0, 1.0, 0.0, dis[2],
2.0*dis[0], 2.0*dis[1], 2.0*dis[2], 1.0, dis.norm_squared(),
0.0, 0.0, 0.0, 0.0, 1.0
])
}
// confirm that projection onto a configuration subspace is equivariant with
// respect to Euclidean motions
#[test]
fn proj_equivar_test() {
// find a pair of spheres that meet at 120°
const SCALED_TOL: f64 = 1.0e-12;
let mut problem_orig = ConstraintProblem::from_guess(&[
sphere(0.0, 0.0, 0.5, 1.0),
sphere(0.0, 0.0, -0.5, 1.0)
]);
problem_orig.gram.push_sym(0, 0, 1.0);
problem_orig.gram.push_sym(1, 1, 1.0);
problem_orig.gram.push_sym(0, 1, 0.5);
let RealizationResult { result: result_orig, history: history_orig } = realize_gram(
&problem_orig, SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
);
let Realization { config: config_orig, tangent: tangent_orig } = result_orig.unwrap();
assert_eq!(config_orig, problem_orig.guess);
assert_eq!(history_orig.scaled_loss.len(), 1);
// find another pair of spheres that meet at 120°. we'll think of this
// solution as a transformed version of the original one
let guess_tfm = {
let a = 0.5 * FRAC_1_SQRT_2;
DMatrix::from_columns(&[
sphere(a, 0.0, 7.0 + a, 1.0),
sphere(-a, 0.0, 7.0 - a, 1.0)
])
};
let problem_tfm = ConstraintProblem {
gram: problem_orig.gram,
guess: guess_tfm,
frozen: problem_orig.frozen
};
let RealizationResult { result: result_tfm, history: history_tfm } = realize_gram(
&problem_tfm, SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
);
let Realization { config: config_tfm, tangent: tangent_tfm } = result_tfm.unwrap();
assert_eq!(config_tfm, problem_tfm.guess);
assert_eq!(history_tfm.scaled_loss.len(), 1);
// project a nudge to the tangent space of the solution variety at the
// original solution
let motion_orig = DVector::from_column_slice(&[0.0, 0.0, 1.0, 0.0]);
let motion_orig_proj = tangent_orig.proj(&motion_orig.as_view(), 0);
// project the equivalent nudge to the tangent space of the solution
// variety at the transformed solution
let motion_tfm = DVector::from_column_slice(&[FRAC_1_SQRT_2, 0.0, FRAC_1_SQRT_2, 0.0]);
let motion_tfm_proj = tangent_tfm.proj(&motion_tfm.as_view(), 0);
// take the transformation that sends the original solution to the
// transformed solution and apply it to the motion that the original
// solution makes in response to the nudge
const ELEMENT_DIM: usize = 5;
let rot = DMatrix::from_column_slice(ELEMENT_DIM, ELEMENT_DIM, &[
FRAC_1_SQRT_2, 0.0, -FRAC_1_SQRT_2, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0,
FRAC_1_SQRT_2, 0.0, FRAC_1_SQRT_2, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.0
]);
let transl = translation(Vector3::new(0.0, 0.0, 7.0));
let motion_proj_tfm = transl * rot * motion_orig_proj;
// confirm that the projection of the nudge is equivariant. we loosen
// the comparison tolerance because the transformation seems to
// introduce some numerical error
const SCALED_TOL_TFM: f64 = 1.0e-9;
let tol_sq = ((problem_orig.guess.nrows() * problem_orig.guess.ncols()) as f64) * SCALED_TOL_TFM * SCALED_TOL_TFM;
assert!((motion_proj_tfm - motion_tfm_proj).norm_squared() < tol_sq);
}
}