dyna3/lang-trials/scala-benchmark/src/main/scala/CircularLawApp.scala
Aaron Fenyes 27ada6566b Scala benchmark: step rotation by multiplying
This makes the algorithm more consistent with the Rust benchmark.
2024-08-10 19:11:55 -07:00

99 lines
3 KiB
Scala

import com.raquo.laminar.api.L.{*, given}
import narr.*
import org.scalajs.dom
import org.scalajs.dom.document
import scala.collection.mutable.ArrayBuffer
import scala.math.{cos, sin}
import slash.matrix.Matrix
import slash.matrix.decomposition.Eigen
object CircularLawApp:
val canvas = canvasTag(widthAttr := 600, heightAttr := 600)
val ctx = canvas.ref.getContext("2d").asInstanceOf[dom.CanvasRenderingContext2D]
val (eigvalSeries, runTimeReport) = randEigvalSeries[60]()
val timeStepState = Var("0")
def draw(timeStep: String): Unit =
// center and normalize the coordinate system
val width = canvas.ref.width
val height = canvas.ref.height
ctx.setTransform(1d, 0d, 0d, -1d, 0.5*width, 0.5*height)
// clear the previous frame
ctx.clearRect(-0.5*width, -0.5*width, width, height)
// find the resolution
val rDisp: Double = 1.5
val res = width / (2*rDisp)
// draw the eigenvalues
val eigvals = eigvalSeries(timeStep.toInt)
for n <- 0 to eigvals(0).length-1 do
ctx.beginPath()
ctx.arc(
res * eigvals(0)(n),
res * eigvals(1)(n),
3d,
0d, 2*math.Pi
)
ctx.fill()
def complexEigenvalues[N <: Int](mat: Matrix[N, N])(using ValueOf[N]): (NArray[Double], NArray[Double]) =
val eigen = Eigen(mat)
(
eigen.realEigenvalues.asInstanceOf[NArray[Double]],
eigen.imaginaryEigenvalues.asInstanceOf[NArray[Double]]
)
def randEigvalSeries[N <: Int]()(using ValueOf[N]): (ArrayBuffer[(NArray[Double], NArray[Double])], String) =
// start timing
val startTime = System.currentTimeMillis()
// initialize the random matrix step
val dim: Int = valueOf[N]
var randMat = new Matrix[N, N](
NArray.tabulate(dim*dim)(k => (math.E*k*k) % 2 - 1)
).times(math.sqrt(3d / dim))
// initialize the rotation step
val timeRes = 100
val maxFreq = 4
val rotStep = Matrix.identity[N, N]
for n <- 0 to dim by 2 do
val ang = math.Pi * (n % maxFreq) / timeRes
val cos_ang = cos(ang)
val sin_ang = sin(ang)
rotStep(n, n) = cos_ang
rotStep(n+1, n) = sin_ang
rotStep(n, n+1) = -sin_ang
rotStep(n+1, n+1) = cos_ang
// find the eigenvalues
val eigvalSeries = ArrayBuffer(complexEigenvalues(randMat))
for _ <- 1 to timeRes-1 do
randMat = rotStep * randMat
eigvalSeries += complexEigenvalues(randMat)
// finish timing
val runTime = System.currentTimeMillis() - startTime
(eigvalSeries, runTime.toString() + " ms")
def main(args: Array[String]): Unit =
ctx.fillStyle = "white"
lazy val app = div(
idAttr := "app",
div(runTimeReport),
canvas,
input(
typ := "range",
maxAttr := (eigvalSeries.length-1).toString,
controlled(
value <-- timeStepState.signal,
onInput.mapToValue --> timeStepState.writer
),
timeStepState.signal --> draw
)
)
renderOnDomContentLoaded(document.body, app)