use nalgebra::{DMatrix, DVector, DVectorView, Vector3}; use rustc_hash::FxHashMap; use slab::Slab; use std::{collections::BTreeSet, sync::atomic::{AtomicU64, Ordering}}; use sycamore::prelude::*; use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */ use crate::{ engine::{Q, local_unif_to_std, realize_gram, ConfigSubspace, PartialMatrix}, specified::SpecifiedValue }; // the types of the keys we use to access an assembly's elements and regulators pub type ElementKey = usize; pub type RegulatorKey = usize; pub type ElementColor = [f32; 3]; /* KLUDGE */ // we should reconsider this design when we build a system for switching between // assemblies. at that point, we might want to switch to hierarchical keys, // where each each element has a key that identifies it within its assembly and // each assembly has a key that identifies it within the sesssion static NEXT_ELEMENT_SERIAL: AtomicU64 = AtomicU64::new(0); #[derive(Clone, PartialEq)] pub struct Element { pub id: String, pub label: String, pub color: ElementColor, pub representation: Signal>, // All regulators with this element as a subject. The assembly owning // this element is responsible for keeping this set up to date. pub regulators: Signal>, // a serial number, assigned by `Element::new`, that uniquely identifies // each element pub serial: u64, // the configuration matrix column index that was assigned to this element // last time the assembly was realized, or `None` if the element has never // been through a realization column_index: Option } impl Element { pub fn new( id: String, label: String, color: ElementColor, representation: DVector ) -> Element { // take the next serial number, panicking if that was the last number we // had left. the technique we use to panic on overflow is taken from // _Rust Atomics and Locks_, by Mara Bos // // https://marabos.nl/atomics/atomics.html#example-handle-overflow // let serial = NEXT_ELEMENT_SERIAL.fetch_update( Ordering::SeqCst, Ordering::SeqCst, |serial| serial.checked_add(1) ).expect("Out of serial numbers for elements"); Element { id: id, label: label, color: color, representation: create_signal(representation), regulators: create_signal(BTreeSet::default()), serial: serial, column_index: None } } // the smallest positive depth, represented as a multiple of `dir`, where // the line generated by `dir` hits the element (which is assumed to be a // sphere). returns `None` if the line misses the sphere. this function // should be kept synchronized with `sphere_cast` in `inversive.frag`, which // does essentially the same thing on the GPU side pub fn cast(&self, dir: Vector3, assembly_to_world: &DMatrix) -> Option { // if `a/b` is less than this threshold, we approximate // `a*u^2 + b*u + c` by the linear function `b*u + c` const DEG_THRESHOLD: f64 = 1e-9; let rep = self.representation.with_untracked(|rep| assembly_to_world * rep); let a = -rep[3] * dir.norm_squared(); let b = rep.rows_range(..3).dot(&dir); let c = -rep[4]; let adjust = 4.0*a*c/(b*b); if adjust < 1.0 { // as long as `b` is non-zero, the linear approximation of // // a*u^2 + b*u + c // // at `u = 0` will reach zero at a finite depth `u_lin`. the root of // the quadratic adjacent to `u_lin` is stored in `lin_root`. if // both roots have the same sign, `lin_root` will be the one closer // to `u = 0` let square_rect_ratio = 1.0 + (1.0 - adjust).sqrt(); let lin_root = -(2.0*c)/b / square_rect_ratio; if a.abs() > DEG_THRESHOLD * b.abs() { if lin_root > 0.0 { Some(lin_root) } else { let other_root = -b/(2.*a) * square_rect_ratio; (other_root > 0.0).then_some(other_root) } } else { (lin_root > 0.0).then_some(lin_root) } } else { // the line through `dir` misses the sphere completely None } } } #[derive(Clone, Copy)] pub struct Regulator { pub subjects: (ElementKey, ElementKey), pub measurement: ReadSignal, pub set_point: Signal } // the velocity is expressed in uniform coordinates pub struct ElementMotion<'a> { pub key: ElementKey, pub velocity: DVectorView<'a, f64> } type AssemblyMotion<'a> = Vec>; // a complete, view-independent description of an assembly #[derive(Clone)] pub struct Assembly { // elements and regulators pub elements: Signal>, pub regulators: Signal>, // solution variety tangent space. the basis vectors are stored in // configuration matrix format, ordered according to the elements' column // indices. when you realize the assembly, every element that's present // during realization gets a column index and is reflected in the tangent // space. since the methods in this module never assign column indices // without later realizing the assembly, we get the following invariant: // // (1) if an element has a column index, its tangent motions can be found // in that column of the tangent space basis matrices // pub tangent: Signal, // indexing pub elements_by_id: Signal> } impl Assembly { pub fn new() -> Assembly { Assembly { elements: create_signal(Slab::new()), regulators: create_signal(Slab::new()), tangent: create_signal(ConfigSubspace::zero(0)), elements_by_id: create_signal(FxHashMap::default()) } } // --- inserting elements and regulators --- // insert an element into the assembly without checking whether we already // have an element with the same identifier. any element that does have the // same identifier will get kicked out of the `elements_by_id` index fn insert_element_unchecked(&self, elt: Element) { let id = elt.id.clone(); let key = self.elements.update(|elts| elts.insert(elt)); self.elements_by_id.update(|elts_by_id| elts_by_id.insert(id, key)); } pub fn try_insert_element(&self, elt: Element) -> bool { let can_insert = self.elements_by_id.with_untracked( |elts_by_id| !elts_by_id.contains_key(&elt.id) ); if can_insert { self.insert_element_unchecked(elt); } can_insert } pub fn insert_new_element(&self) { // find the next unused identifier in the default sequence let mut id_num = 1; let mut id = format!("sphere{}", id_num); while self.elements_by_id.with_untracked( |elts_by_id| elts_by_id.contains_key(&id) ) { id_num += 1; id = format!("sphere{}", id_num); } // create and insert a new element self.insert_element_unchecked( Element::new( id, format!("Sphere {}", id_num), [0.75_f32, 0.75_f32, 0.75_f32], DVector::::from_column_slice(&[0.0, 0.0, 0.0, 0.5, -0.5]) ) ); } fn insert_regulator(&self, regulator: Regulator) { let subjects = regulator.subjects; let key = self.regulators.update(|regs| regs.insert(regulator)); let subject_regulators = self.elements.with( |elts| (elts[subjects.0].regulators, elts[subjects.1].regulators) ); subject_regulators.0.update(|regs| regs.insert(key)); subject_regulators.1.update(|regs| regs.insert(key)); } pub fn insert_new_regulator(self, subjects: (ElementKey, ElementKey)) { // create and insert a new regulator let measurement = self.elements.map( move |elts| { let reps = ( elts[subjects.0].representation.get_clone(), elts[subjects.1].representation.get_clone() ); reps.0.dot(&(&*Q * reps.1)) } ); let set_point = create_signal(SpecifiedValue::from_empty_spec()); self.insert_regulator(Regulator { subjects: subjects, measurement: measurement, set_point: set_point }); /* DEBUG */ // print an updated list of regulators console::log_1(&JsValue::from("Regulators:")); self.regulators.with(|regs| { for (_, reg) in regs.into_iter() { console::log_5( &JsValue::from(" "), &JsValue::from(reg.subjects.0), &JsValue::from(reg.subjects.1), &JsValue::from(":"), ®.set_point.with_untracked( |set_pt| JsValue::from(set_pt.spec.as_str()) ) ); } }); // update the realization when the regulator becomes a constraint, or is // edited while acting as a constraint create_effect(move || { console::log_1(&JsValue::from( format!("Updated constraint with subjects ({}, {})", subjects.0, subjects.1) )); if set_point.with(|set_pt| set_pt.is_present()) { self.realize(); } }); } // --- realization --- pub fn realize(&self) { // index the elements self.elements.update_silent(|elts| { for (index, (_, elt)) in elts.into_iter().enumerate() { elt.column_index = Some(index); } }); // set up the Gram matrix and the initial configuration matrix let (gram, guess) = self.elements.with_untracked(|elts| { // set up the off-diagonal part of the Gram matrix let mut gram_to_be = PartialMatrix::new(); self.regulators.with_untracked(|regs| { for (_, reg) in regs { reg.set_point.with_untracked(|set_pt| { if let Some(val) = set_pt.value { let subjects = reg.subjects; let row = elts[subjects.0].column_index.unwrap(); let col = elts[subjects.1].column_index.unwrap(); gram_to_be.push_sym(row, col, val); } }); } }); // set up the initial configuration matrix and the diagonal of the // Gram matrix let mut guess_to_be = DMatrix::::zeros(5, elts.len()); for (_, elt) in elts { let index = elt.column_index.unwrap(); gram_to_be.push_sym(index, index, 1.0); guess_to_be.set_column(index, &elt.representation.get_clone_untracked()); } (gram_to_be, guess_to_be) }); /* DEBUG */ // log the Gram matrix console::log_1(&JsValue::from("Gram matrix:")); gram.log_to_console(); /* DEBUG */ // log the initial configuration matrix console::log_1(&JsValue::from("Old configuration:")); for j in 0..guess.nrows() { let mut row_str = String::new(); for k in 0..guess.ncols() { row_str.push_str(format!(" {:>8.3}", guess[(j, k)]).as_str()); } console::log_1(&JsValue::from(row_str)); } // look for a configuration with the given Gram matrix let (config, tangent, success, history) = realize_gram( &gram, guess, &[], 1.0e-12, 0.5, 0.9, 1.1, 200, 110 ); /* DEBUG */ // report the outcome of the search console::log_1(&JsValue::from( if success { "Target accuracy achieved!" } else { "Failed to reach target accuracy" } )); console::log_2(&JsValue::from("Steps:"), &JsValue::from(history.scaled_loss.len() - 1)); console::log_2(&JsValue::from("Loss:"), &JsValue::from(*history.scaled_loss.last().unwrap())); console::log_2(&JsValue::from("Tangent dimension:"), &JsValue::from(tangent.dim())); if success { // read out the solution for (_, elt) in self.elements.get_clone_untracked() { elt.representation.update( |rep| rep.set_column(0, &config.column(elt.column_index.unwrap())) ); } // save the tangent space self.tangent.set_silent(tangent); } } // --- deformation --- // project the given motion to the tangent space of the solution variety and // move the assembly along it. the implementation is based on invariant (1) // from above and the following additional invariant: // // (2) if an element is affected by a constraint, it has a column index // // we have this invariant because the assembly gets realized each time you // add a constraint pub fn deform(&self, motion: AssemblyMotion) { /* KLUDGE */ // when the tangent space is zero, deformation won't do anything, but // the attempt to deform should be registered in the UI. this console // message will do for now if self.tangent.with(|tan| tan.dim() <= 0 && tan.assembly_dim() > 0) { console::log_1(&JsValue::from("The assembly is rigid")); } // give a column index to each moving element that doesn't have one yet. // this temporarily breaks invariant (1), but the invariant will be // restored when we realize the assembly at the end of the deformation. // in the process, we find out how many matrix columns we'll need to // hold the deformation let realized_dim = self.tangent.with(|tan| tan.assembly_dim()); let motion_dim = self.elements.update_silent(|elts| { let mut next_column_index = realized_dim; for elt_motion in motion.iter() { let moving_elt = &mut elts[elt_motion.key]; if moving_elt.column_index.is_none() { moving_elt.column_index = Some(next_column_index); next_column_index += 1; } } next_column_index }); // project the element motions onto the tangent space of the solution // variety and sum them to get a deformation of the whole assembly. the // matrix `motion_proj` that holds the deformation has extra columns for // any moving elements that aren't reflected in the saved tangent space const ELEMENT_DIM: usize = 5; let mut motion_proj = DMatrix::zeros(ELEMENT_DIM, motion_dim); for elt_motion in motion { // we can unwrap the column index because we know that every moving // element has one at this point let column_index = self.elements.with_untracked( |elts| elts[elt_motion.key].column_index.unwrap() ); if column_index < realized_dim { // this element had a column index when we started, so by // invariant (1), it's reflected in the tangent space let mut target_columns = motion_proj.columns_mut(0, realized_dim); target_columns += self.tangent.with( |tan| tan.proj(&elt_motion.velocity, column_index) ); } else { // this element didn't have a column index when we started, so // by invariant (2), it's unconstrained let mut target_column = motion_proj.column_mut(column_index); let unif_to_std = self.elements.with_untracked( |elts| { elts[elt_motion.key].representation.with_untracked( |rep| local_unif_to_std(rep.as_view()) ) } ); target_column += unif_to_std * elt_motion.velocity; } } // step the assembly along the deformation. this changes the elements' // normalizations, so we restore those afterward /* KLUDGE */ // since our test assemblies only include spheres, we assume that every // element is on the 1 mass shell for (_, elt) in self.elements.get_clone_untracked() { elt.representation.update_silent(|rep| { match elt.column_index { Some(column_index) => { // step the assembly along the deformation *rep += motion_proj.column(column_index); // restore normalization by contracting toward the last // coordinate axis let q_sp = rep.fixed_rows::<3>(0).norm_squared(); let half_q_lt = -2.0 * rep[3] * rep[4]; let half_q_lt_sq = half_q_lt * half_q_lt; let scaling = half_q_lt + (q_sp + half_q_lt_sq).sqrt(); rep.fixed_rows_mut::<4>(0).scale_mut(1.0 / scaling); }, None => { console::log_1(&JsValue::from( format!("No velocity to unpack for fresh element \"{}\"", elt.id) )) } }; }); } // bring the configuration back onto the solution variety. this also // gets the elements' column indices and the saved tangent space back in // sync self.realize(); } }