Compare commits

..

112 commits
main ... gram

Author SHA1 Message Date
Aaron Fenyes
9d69a900e2 Irisawa hexlet: use Abe's terminology in comments
Abe uses the names "sun" and "moon" for what Wikipedia calls the nucleus
spheres.
2024-07-18 03:39:41 -07:00
Aaron Fenyes
8a77cd7484 Irisawa hexlet: drop unviable approach
The approach in the deleted file can't work, because the "sun" and
"moon" spheres can't be placed arbitrarily.
2024-07-18 03:21:46 -07:00
Aaron Fenyes
a26f1e3927 Add Irisawa hexlet example
Hat tip Romy, who sent me the article on sangaku that led me to this
problem.
2024-07-18 03:16:57 -07:00
Aaron Fenyes
19a4d49497 Clean up example formatting 2024-07-18 01:48:05 -07:00
Aaron Fenyes
71c10adbdd Overlapping pyramids: drop outdated comment 2024-07-18 01:12:49 -07:00
Aaron Fenyes
33c09917d0 Correct scope of guess constants 2024-07-18 01:05:13 -07:00
Aaron Fenyes
b24dcc9af8 Report success correctly when step limit is reached 2024-07-18 01:04:40 -07:00
Aaron Fenyes
b040bbb7fe Drop old code from examples 2024-07-18 00:50:48 -07:00
Aaron Fenyes
9007c8bc7c Circles in triangle: jiggle the guess 2024-07-18 00:49:09 -07:00
Aaron Fenyes
a7f9545a37 Circles in triangle: correct frozen variables
Since the self-product of the point at infinity is left unspecified, the
first three components can vary without violating any constraints. To
keep the point at infinity where it's supposed to be, we freeze all of
its components.
2024-07-18 00:43:00 -07:00
Aaron Fenyes
3764fde2f6 Clean up formatting of notes 2024-07-18 00:27:10 -07:00
Aaron Fenyes
24dae6807b Clarify notes on tangency 2024-07-18 00:16:23 -07:00
Aaron Fenyes
74c7f64b0c Correct sign of normal in plane utility
Clarify the relevant notes too.
2024-07-18 00:03:12 -07:00
Aaron Fenyes
d0340c0b65 Correct point utility again
The balance between the light cone basis vectors was wrong, throwing the
point's coordinates off by a factor of two.
2024-07-17 23:37:28 -07:00
Aaron Fenyes
69a704d414 Use notes' sign convention for light cone basis 2024-07-17 23:07:34 -07:00
Aaron Fenyes
01f44324c1 Tetrahedron radius ratio: find radius ratio 2024-07-17 22:45:17 -07:00
Aaron Fenyes
96ffc59642 Tetrahedron radius ratio: tweak guess
Jiggle the vertex guesses. Put the circumscribed sphere guess on-shell.
2024-07-17 19:01:34 -07:00
Aaron Fenyes
a02b76544a Tetrahedron radius ratio: add circumscribed sphere 2024-07-17 18:55:36 -07:00
Aaron Fenyes
6e719f9943 Tetrahedron radius ratio: correct vertex guesses 2024-07-17 18:27:58 -07:00
Aaron Fenyes
d51d43f481 Correct point utility 2024-07-17 18:27:22 -07:00
Aaron Fenyes
6d233b5ee9 Tetrahedron radius ratio: correct signs 2024-07-17 18:08:36 -07:00
Aaron Fenyes
5abd4ca6e1 Revert "Give spheres positive radii in examples"
This reverts commit 4728959ae0, which
actually gave the spheres negative radii! I got confused by the sign
convention differences between the notes and the engine.
2024-07-17 17:49:43 -07:00
Aaron Fenyes
ea640f4861 Start tetrahedron radius ratio example
Add the vertices of the tetrahedron to the `sphere-in-tetrahedron`
example.
2024-07-17 17:33:32 -07:00
Aaron Fenyes
4728959ae0 Give spheres positive radii in examples
This changes the meaning of `indep_val` in the overlapping pyramids
example, so we adjust `indep_val` to get a nice-looking construction.
2024-07-17 17:22:33 -07:00
Aaron Fenyes
2038103d80 Write examples directly in light cone basis 2024-07-17 15:37:14 -07:00
Aaron Fenyes
bde42ebac0 Switch engine to light cone basis 2024-07-17 14:30:43 -07:00
Aaron Fenyes
e6cf08a9b3 Make tetrahedron faces planar 2024-07-15 23:54:59 -07:00
Aaron Fenyes
7c77481f5e Don't constrain self-product of frozen vector 2024-07-15 23:39:05 -07:00
Aaron Fenyes
1ce609836b Implement frozen variables 2024-07-15 22:11:54 -07:00
Aaron Fenyes
b185fd4b83 Switch to backtracking Newton's method in Optim
This performs much better than the trust region Newton's method for the
actual `circles-in-triangle` problem. (The trust region method performs
better for the simplified problem produced by the conversion bug.)
2024-07-15 15:52:38 -07:00
Aaron Fenyes
94e0d321d5 Switch back to BigFloat precision in examples 2024-07-15 14:31:30 -07:00
Aaron Fenyes
53d8c38047 Preserve explicit zeros in Gram matrix conversion
In previous commits, the `circles-in-triangle` example converged much
more slowly in BigFloat precision than in Float64 precision. This
turned out to be a sign of a bug in the Float64 computation: converting
the Gram matrix using `Float64.()` dropped the explicit zeros, removing
many constraints and making the problem much easier to solve. This
commit corrects the Gram matrix conversion. The Float64 search now
solves the same problem as the BigFloat search, with comparable
performance.
2024-07-15 14:08:57 -07:00
Aaron Fenyes
7b3efbc385 Clean up backtracking gradient descent code
Drop experimental singularity handling strategies. Reduce the default
tolerance to within 64-bit floating point precision. Report success.
2024-07-15 13:15:15 -07:00
Aaron Fenyes
25b09ebf92 Sketch backtracking Newton's method
This code is a mess, but I'm committing it to record a working state
before I start trying to clean up.
2024-07-15 11:32:04 -07:00
Aaron Fenyes
3910b9f740 Use Newton's method for polishing 2024-07-11 13:43:52 -07:00
Aaron Fenyes
d538cbf716 Correct improvement threshold by using unit step
Our formula for the improvement theshold works when the step size is
an absolute distance. However, in commit `4d5ea06`, the step size was
measured relative to the current gradient instead. This commit scales
the base step to unit length, so now the step size really is an absolute
distance.
2024-07-10 23:31:44 -07:00
Aaron Fenyes
4d5ea062a3 Record gradient and last line search in history 2024-07-09 15:00:13 -07:00
Aaron Fenyes
5652719642 Require triangle sides to be planar 2024-07-09 14:10:23 -07:00
Aaron Fenyes
f84d475580 Visualize neighborhoods of global minima 2024-07-09 14:01:30 -07:00
Aaron Fenyes
77bc124170 Change loss function to match gradient 2024-07-09 14:00:24 -07:00
Aaron Fenyes
023759a267 Start "circles in triangle" from a very close guess 2024-07-08 14:21:10 -07:00
Aaron Fenyes
610fc451f0 Track slope in gradient descent history 2024-07-08 14:19:25 -07:00
Aaron Fenyes
93dd05c317 Add required package to "sphere in tetrahedron" example 2024-07-08 14:19:05 -07:00
Aaron Fenyes
9efa99e8be Test gradient descent for circles in triangle 2024-07-08 12:56:28 -07:00
Aaron Fenyes
828498b3de Add sphere and plane utilities to engine 2024-07-08 12:56:14 -07:00
Aaron Fenyes
736ac50b07 Test gradient descent for sphere in tetrahedron 2024-07-07 17:58:55 -07:00
Aaron Fenyes
ea354b6c2b Randomize guess in gradient descent test
Randomly perturb the pre-solved part of the guess, and randomly choose
the unsolved part.
2024-07-07 17:56:12 -07:00
Aaron Fenyes
d39244d308 Host Ganja.js locally 2024-07-06 21:35:09 -07:00
Aaron Fenyes
7e94fef19e Improve random vector generator 2024-07-06 21:32:43 -07:00
Aaron Fenyes
abc53b4705 Sketch random vector generator
This needs to be rewritten: it can fail at generating spacelike vectors.
2024-07-02 17:16:31 -07:00
Aaron Fenyes
17fefff61e Name gradient descent test more specifically 2024-07-02 17:16:19 -07:00
Aaron Fenyes
133519cacb Encapsulate gradient descent code
The completed gram matrix from this commit matches the one from commit
e7dde58 to six decimal places.
2024-07-02 15:02:59 -07:00
Aaron Fenyes
e7dde5800c Do gradient descent entirely in BigFloat
The previos version accidentally returned steps in Float64.
2024-07-02 12:35:12 -07:00
Aaron Fenyes
242d630cc6 Get Ganja.js to display planes 2024-06-27 21:49:53 -07:00
Aaron Fenyes
8eb1ebb8d2 Merge branch 'ganja' into gram 2024-06-26 15:57:07 -07:00
Aaron Fenyes
05a824834d Let visibility controls scroll 2024-06-26 15:56:51 -07:00
Aaron Fenyes
a113f33635 Merge branch 'ganja' into gram
Get visibility controls.
2024-06-26 15:52:20 -07:00
Aaron Fenyes
5ea32ac53c Streamline visibility controls 2024-06-26 15:51:57 -07:00
Aaron Fenyes
3eb4fc6c91 Add element visibility controls 2024-06-26 15:24:31 -07:00
Aaron Fenyes
7aaf134a36 Size the viewer window automatically 2024-06-26 13:15:54 -07:00
Aaron Fenyes
c933e07312 Switch to Ganja.js basis ordering 2024-06-26 11:39:34 -07:00
Aaron Fenyes
2b6c4f4720 Avoid naming conflict with identity transformation 2024-06-26 11:28:47 -07:00
Aaron Fenyes
5aadfecf6c Merge branch 'ganja' into gram
Visualize low-rank factorization results.
2024-06-26 11:12:24 -07:00
Aaron Fenyes
4a28a47520 Update namespace of AbstractAlgebra.Rationals 2024-06-26 01:06:27 -07:00
Aaron Fenyes
a3b1f4920c Build construction viewer module 2024-06-26 00:41:21 -07:00
Aaron Fenyes
665cb30ce0 Correct indentation of CSS 2024-06-25 23:31:00 -07:00
Aaron Fenyes
182b5bb9f6 Generate palette automatically 2024-06-25 17:57:16 -07:00
Aaron Fenyes
b7b5b9386b Load elements from Julia into Ganja.js 2024-06-25 16:30:19 -07:00
Aaron Fenyes
06a9dda5bb Play with reflections
Try configuration of five tangent spheres.
2024-06-25 13:40:40 -07:00
Aaron Fenyes
69a9baa8ee Add live updates to Ganja.js visualization 2024-06-25 03:11:50 -07:00
Aaron Fenyes
3b10c95d5f Clean up examples
Declare JavaScript variables. Revise Julia comments to match new code.
2024-06-25 02:58:39 -07:00
Aaron Fenyes
3c34481519 Get familiar with Ganja.js inline syntax 2024-06-25 01:54:01 -07:00
Aaron Fenyes
d1ce91d2aa Get a Ganja.js visualization running in Blink 2024-06-24 19:37:57 -07:00
Aaron Fenyes
58a5c38e62 Try numerical low-rank factorization
The best technique I've found so far is the homemade gradient descent
routine in `descent-test.jl`.
2024-05-30 00:36:03 -07:00
Aaron Fenyes
ef33b8ee10 Correct signature 2024-03-01 13:26:20 -05:00
Aaron Fenyes
717e5a6200 Extend Gram matrix automatically
The signature of the Minkowski form on the subspace spanned by the Gram
matrix should tell us what the big Gram matrix has to look like
2024-02-21 03:00:06 -05:00
Aaron Fenyes
16826cf07c Try out the Gram matrix approach 2024-02-20 22:35:24 -05:00
Aaron Fenyes
3170a933e4 Clean up example of three mutually tangent spheres 2024-02-15 17:16:37 -08:00
Aaron Fenyes
f2000e5731 Test different sign patterns for cosines
It seems like there are real solutions if and only if the product of the
cosines is positive.
2024-02-15 16:25:09 -08:00
Aaron Fenyes
ba365174d3 Find real solutions for three mutually tangent spheres
I'm not sure why the solver wasn't working before. It might've been just
an unlucky random number draw.
2024-02-15 16:16:06 -08:00
Aaron Fenyes
ae5db0f9ea Make results reproducible 2024-02-15 16:00:46 -08:00
Aaron Fenyes
8d8bc9162c Store elements in arrays to keep order stable
This seems to restore reproducibility.
2024-02-15 15:42:26 -08:00
Aaron Fenyes
291d5c8ff6 Study mutually tangent spheres with two fixed 2024-02-15 13:28:01 -08:00
Aaron Fenyes
e41bcc7e13 Explore the performance wall
Three points on two spheres is too much.
2024-02-13 04:02:14 -05:00
Aaron Fenyes
31d5e7e864 Play with two points on two spheres
Guess conditions that make the scaling constraint impossible to satisfy.
2024-02-12 22:48:16 -05:00
Aaron Fenyes
a450f701fb Try displaying a chain of spheres
For three mutually tangent spheres, I couldn't find real solutions.
2024-02-12 21:14:07 -05:00
Aaron Fenyes
6cf07dc6a1 Evaluate and display elements 2024-02-12 20:34:12 -05:00
Aaron Fenyes
1f173708eb Move random cut routine into engine 2024-02-10 17:39:26 -05:00
Aaron Fenyes
6f18d4efcc Test lots of uniformly distributed hyperplanes 2024-02-10 15:10:48 -05:00
Aaron Fenyes
621c4c5776 Try uniformly distributed hyperplane orientations
Unit normals are uniformly distributed over the sphere.
2024-02-10 15:02:26 -05:00
Aaron Fenyes
b3b7c2026d Separate the algebraic and numerical parts of the engine 2024-02-10 14:50:50 -05:00
Aaron Fenyes
af1d31f6e6 Test a scale constraint
In all but a few cases (for example, a single point on a plane), we
should be able to us the radius-coradius boost symmetry to make the
average co-radius—representing the "overall scale"—roughly one.
2024-02-10 14:21:52 -05:00
Aaron Fenyes
8e33987f59 Systematically try out different cut planes 2024-02-10 13:46:01 -05:00
Aaron Fenyes
06872a04af Say how many sample solutions we found 2024-02-10 01:06:06 -05:00
Aaron Fenyes
becefe0c47 Try switching to compiled system 2024-02-10 00:59:50 -05:00
Aaron Fenyes
34358a8728 Find witnesses on random rational hyperplanes
Choose hyperplanes that go through the trivial solution.
2024-02-09 23:44:10 -05:00
Aaron Fenyes
95c0ff14b2 Show explicitly that all coefficients are 1 in first cut equation 2024-02-09 17:09:43 -05:00
Aaron Fenyes
f97090c997 Try a cut that goes through the trivial solution
The previous cut was supposed to do this, but I was missing some parentheses.
2024-02-08 01:58:12 -05:00
Aaron Fenyes
45aaaafc8f Seek sample solutions by cutting with a hyperplane
The example hyperplane yields a single solution, with multiplicity six. You can
find it analytically by hand, and homotopy continuation finds it numerically.
2024-02-08 01:53:55 -05:00
Aaron Fenyes
43cbf8a3a0 Add relations to center and orient the construction 2024-02-05 00:10:13 -05:00
Aaron Fenyes
21f09c4a4d Switch element abbreviation from "elem" to "elt" 2024-02-04 16:08:13 -05:00
Aaron Fenyes
a3f3f6a31b Order spheres before points within each coordinate block
In the cases I've tried so far, this leads to substantially smaller
Gröbner bases.
2024-02-01 16:13:22 -05:00
Aaron Fenyes
65d23fb667 Use module names as filenames
You're right: this naming convention seems to be standard for Julia
modules now.
2024-01-30 02:49:33 -05:00
Aaron Fenyes
4e02ee16fc Find dimension of solution variety 2024-01-30 02:45:14 -05:00
Aaron Fenyes
6349f298ae Extend AbstractAlgebra ideals to rational coefficients
The extension should also let us work over finite fields of prime order,
although we don't need to do that.
2024-01-29 19:11:21 -05:00
Aaron Fenyes
0731c7aac1 Correct relation equations 2024-01-29 12:41:07 -05:00
Aaron Fenyes
59a527af43 Correct Minkowski product; build chain of three spheres 2024-01-29 12:28:57 -05:00
Aaron Fenyes
c29000d912 Write a simple solver for the hitting set problem
I think we need this to find the dimension of the solution variety.
2024-01-28 01:34:13 -05:00
Aaron Fenyes
86dbd9ea45 Order variables by coordinate and then element
In other words, order coordinates like
  (rₛ₁, rₛ₂, sₛ₁, sₛ₂, xₛ₁, xₛ₂, xₚ₃, yₛ₁, yₛ₂, yₚ₃, zₛ₁, zₛ₂, zₚ₃)
instead of like
  (rₛ₁, sₛ₁, xₛ₁, yₛ₁, zₛ₁, rₛ₂, sₛ₂, xₛ₂, yₛ₂, zₛ₂, xₚ₃, yₚ₃, zₚ₃).

In the test cases, this really cuts down the size of the Gröbner basis.
2024-01-27 14:21:03 -05:00
Aaron Fenyes
463a3b21e1 Realize relations as equations 2024-01-27 12:28:29 -05:00
Aaron Fenyes
4d5aa3b327 Realize geometric elements as symbolic vectors 2024-01-26 11:14:32 -05:00
Aaron Fenyes
b864cf7866 Start drafting engine prototype 2024-01-24 11:16:24 -05:00
41 changed files with 44 additions and 6936 deletions

View file

@ -1,22 +0,0 @@
# set up the Trunk web build system
#
# https://trunkrs.dev
#
# the `curl` call is based on David Tolnay's `rust-toolchain` action
#
# https://github.com/dtolnay/rust-toolchain
#
runs:
using: "composite"
steps:
- run: rustup target add wasm32-unknown-unknown
# install the Trunk binary to `ci-bin` within the workspace directory, which
# is determined by the `github.workspace` label and reflected in the
# `GITHUB_WORKSPACE` environment variable. then, make the `trunk` command
# available by placing the fully qualified path to `ci-bin` on the
# workflow's search path
- run: mkdir -p ci-bin
- run: curl --output - --proto '=https' --tlsv1.2 --retry 10 --retry-connrefused --location --silent --show-error --fail 'https://github.com/trunk-rs/trunk/releases/download/v0.21.12/trunk-x86_64-unknown-linux-gnu.tar.gz' | tar --gunzip --extract --file -
working-directory: ci-bin
- run: echo "${{ github.workspace }}/ci-bin" >> $GITHUB_PATH

View file

@ -1,29 +0,0 @@
on:
pull_request:
push:
branches: [main]
jobs:
# run the automated tests, reporting success if the tests pass and were built
# without warnings. the examples are run as tests, because we've configured
# each example target with `test = true` and `harness = false` in Cargo.toml.
# Trunk build failures caused by problems outside the Rust source code, like
# missing assets, should be caught by `trunk_build_test`
test:
runs-on: docker
container:
image: cimg/rust:1.86-node
defaults:
run:
# set the default working directory for each `run` step, relative to the
# workspace directory. this default only affects `run` steps (and if we
# tried to set the `working-directory` label for any other kind of step,
# it wouldn't be recognized anyway)
working-directory: app-proto
steps:
# Check out the repository so that its top-level directory is the
# workspace directory (action variable `github.workspace`, environment
# variable `$GITHUB_WORKSPACE`):
- uses: https://code.forgejo.org/actions/checkout@v4
- uses: ./.forgejo/setup-trunk
- run: RUSTFLAGS='-D warnings' cargo test

8
.gitignore vendored
View file

@ -1,2 +1,8 @@
ci-bin
node_modules
site
docbuild
__tests__
coverage
dyna3.zip
tmpproj
*~

View file

@ -17,51 +17,3 @@ Note that currently this is just the barest beginnings of the project, more of a
* Able to run in browser (so implemented in WASM-compatible language)
* Produce scalable graphics of 3D diagrams, and maybe STL files (or other fabricatable file format) as well.
## Prototype
The latest prototype is in the folder `app-proto`. It includes both a user interface and a numerical constraint-solving engine.
### Install the prerequisites
1. Install [`rustup`](https://rust-lang.github.io/rustup/): the officially recommended Rust toolchain manager
* It's available on Ubuntu as a [Snap](https://snapcraft.io/rustup)
2. Call `rustup default stable` to "download the latest stable release of Rust and set it as your default toolchain"
* If you forget, the `rustup` [help system](https://github.com/rust-lang/rustup/blob/d9b3601c3feb2e88cf3f8ca4f7ab4fdad71441fd/src/errors.rs#L109-L112) will remind you
3. Call `rustup target add wasm32-unknown-unknown` to add the [most generic 32-bit WebAssembly target](https://doc.rust-lang.org/nightly/rustc/platform-support/wasm32-unknown-unknown.html)
4. Call `cargo install wasm-pack` to install the [WebAssembly toolchain](https://rustwasm.github.io/docs/wasm-pack/)
5. Call `cargo install trunk` to install the [Trunk](https://trunkrs.dev/) web-build tool
6. Add the `.cargo/bin` folder in your home directory to your executable search path
* This lets you call Trunk, and other tools installed by Cargo, without specifying their paths
* On POSIX systems, the search path is stored in the `PATH` environment variable
### Play with the prototype
1. From the `app-proto` folder, call `trunk serve --release` to build and serve the prototype
* *The crates the prototype depends on will be downloaded and served automatically*
* *For a faster build, at the expense of a much slower prototype, you can call `trunk serve` without the `--release` flag*
* *If you want to stay in the top-level folder, you can call `trunk serve --config app-proto [--release]`* from there instead.
3. In a web browser, visit one of the URLs listed under the message `INFO 📡 server listening at:`
* *Touching any file in the `app-proto` folder will make Trunk rebuild and live-reload the prototype*
4. Press *ctrl+C* in the shell where Trunk is running to stop serving the prototype
### Run the engine on some example problems
1. Go into the `app-proto` folder
2. Call `./run-examples`
* *For each example problem, the engine will print the value of the loss function at each optimization step*
* *The first example that prints is the same as the Irisawa hexlet example from the Julia version of the engine prototype. If you go into `engine-proto/gram-test`, launch Julia, and then*
```julia
include("irisawa-hexlet.jl")
for (step, scaled_loss) in enumerate(history_alt.scaled_loss)
println(rpad(step-1, 4), " | ", scaled_loss)
end
```
*you should see that it prints basically the same loss history until the last few steps, when the lower default precision of the Rust engine really starts to show*
### Run the automated tests
1. Go into the `app-proto` folder
2. Call `cargo test`

View file

@ -1,4 +0,0 @@
target
dist
profiling
Cargo.lock

1325
app-proto/Cargo.lock generated

File diff suppressed because it is too large Load diff

View file

@ -1,81 +0,0 @@
[package]
name = "dyna3"
version = "0.1.0"
authors = ["Aaron Fenyes", "Glen Whitney"]
edition = "2021"
rust-version = "1.86"
[features]
default = ["console_error_panic_hook"]
dev = []
[dependencies]
itertools = "0.13.0"
js-sys = "0.3.70"
lazy_static = "1.5.0"
nalgebra = "0.33.0"
readonly = "0.2.12"
sycamore = "0.9.1"
# We use Charming to help display engine diagnostics
charming = { version = "0.5.1", features = ["wasm"] }
# The `console_error_panic_hook` crate provides better debugging of panics by
# logging them with `console.error`. This is great for development, but requires
# all the `std::fmt` and `std::panicking` infrastructure, so isn't great for
# code size when deploying.
console_error_panic_hook = { version = "0.1.7", optional = true }
[dependencies.web-sys]
version = "0.3.69"
features = [
'DomRect',
'HtmlCanvasElement',
'HtmlInputElement',
'Performance',
'WebGl2RenderingContext',
'WebGlBuffer',
'WebGlProgram',
'WebGlShader',
'WebGlUniformLocation',
'WebGlVertexArrayObject'
]
# the self-dependency specifies features to use for tests and examples
#
# https://github.com/rust-lang/cargo/issues/2911#issuecomment-1483256987
#
[dev-dependencies]
dyna3 = { path = ".", default-features = false, features = ["dev"] }
wasm-bindgen-test = "0.3.34"
# turn off spurious warnings about the custom config that Sycamore uses
#
# https://sycamore.dev/book/troubleshooting#unexpected-cfg-condition-name--sycamore-force-ssr
#
[lints.rust]
unexpected_cfgs = { level = "warn", check-cfg = ["cfg(sycamore_force_ssr)"] }
[profile.release]
opt-level = "s" # optimize for small code size
debug = true # include debug symbols
[[example]]
name = "irisawa-hexlet"
test = true
harness = false
[[example]]
name = "kaleidocycle"
test = true
harness = false
[[example]]
name = "point-on-sphere"
test = true
harness = false
[[example]]
name = "three-spheres"
test = true
harness = false

View file

@ -1,36 +0,0 @@
#![allow(dead_code)]
use nalgebra::DMatrix;
use dyna3::engine::{Q, DescentHistory, Realization};
pub fn title(title: &str) {
println!("─── {title} ───");
}
pub fn realization_diagnostics(realization: &Realization) {
let Realization { result, history } = realization;
println!();
if let Err(ref message) = result {
println!("❌️ {message}");
} else {
println!("✅️ Target accuracy achieved!");
}
println!("Steps: {}", history.scaled_loss.len() - 1);
println!("Loss: {}", history.scaled_loss.last().unwrap());
}
pub fn gram_matrix(config: &DMatrix<f64>) {
println!("\nCompleted Gram matrix:{}", (config.tr_mul(&*Q) * config).to_string().trim_end());
}
pub fn config(config: &DMatrix<f64>) {
println!("\nConfiguration:{}", config.to_string().trim_end());
}
pub fn loss_history(history: &DescentHistory) {
println!("\nStep │ Loss\n─────┼────────────────────────────────");
for (step, scaled_loss) in history.scaled_loss.iter().enumerate() {
println!("{:<4}{}", step, scaled_loss);
}
}

View file

@ -1,23 +0,0 @@
#[path = "common/print.rs"]
mod print;
use dyna3::engine::{ConfigNeighborhood, examples::realize_irisawa_hexlet};
fn main() {
const SCALED_TOL: f64 = 1.0e-12;
let realization = realize_irisawa_hexlet(SCALED_TOL);
print::title("Irisawa hexlet");
print::realization_diagnostics(&realization);
if let Ok(ConfigNeighborhood { config, .. }) = realization.result {
// print the diameters of the chain spheres
println!("\nChain diameters:");
println!(" {} sun (given)", 1.0 / config[(3, 3)]);
for k in 4..9 {
println!(" {} sun", 1.0 / config[(3, k)]);
}
// print the completed Gram matrix
print::gram_matrix(&config);
}
print::loss_history(&realization.history);
}

View file

@ -1,32 +0,0 @@
#[path = "common/print.rs"]
mod print;
use nalgebra::{DMatrix, DVector};
use dyna3::engine::{ConfigNeighborhood, examples::realize_kaleidocycle};
fn main() {
const SCALED_TOL: f64 = 1.0e-12;
let realization = realize_kaleidocycle(SCALED_TOL);
print::title("Kaleidocycle");
print::realization_diagnostics(&realization);
if let Ok(ConfigNeighborhood { config, nbhd: tangent }) = realization.result {
// print the completed Gram matrix and the realized configuration
print::gram_matrix(&config);
print::config(&config);
// find the kaleidocycle's twist motion by projecting onto the tangent
// space
const N_POINTS: usize = 12;
let up = DVector::from_column_slice(&[0.0, 0.0, 1.0, 0.0]);
let down = -&up;
let twist_motion: DMatrix<_> = (0..N_POINTS).step_by(4).flat_map(
|n| [
tangent.proj(&up.as_view(), n),
tangent.proj(&down.as_view(), n+1)
]
).sum();
let normalization = 5.0 / twist_motion[(2, 0)];
println!("\nTwist motion:{}", (normalization * twist_motion).to_string().trim_end());
}
}

View file

@ -1,33 +0,0 @@
#[path = "common/print.rs"]
mod print;
use dyna3::engine::{
point,
realize_gram,
sphere,
ConfigNeighborhood,
ConstraintProblem
};
fn main() {
let mut problem = ConstraintProblem::from_guess(&[
point(0.0, 0.0, 2.0),
sphere(0.0, 0.0, 0.0, 1.0)
]);
for j in 0..2 {
for k in j..2 {
problem.gram.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 });
}
}
problem.frozen.push(3, 0, problem.guess[(3, 0)]);
let realization = realize_gram(
&problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
print::title("Point on a sphere");
print::realization_diagnostics(&realization);
if let Ok(ConfigNeighborhood{ config, .. }) = realization.result {
print::gram_matrix(&config);
print::config(&config);
}
print::loss_history(&realization.history);
}

View file

@ -1,34 +0,0 @@
#[path = "common/print.rs"]
mod print;
use dyna3::engine::{
realize_gram,
sphere,
ConfigNeighborhood,
ConstraintProblem
};
fn main() {
let mut problem = ConstraintProblem::from_guess({
let a: f64 = 0.75_f64.sqrt();
&[
sphere(1.0, 0.0, 0.0, 1.0),
sphere(-0.5, a, 0.0, 1.0),
sphere(-0.5, -a, 0.0, 1.0)
]
});
for j in 0..3 {
for k in j..3 {
problem.gram.push_sym(j, k, if j == k { 1.0 } else { -1.0 });
}
}
let realization = realize_gram(
&problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
print::title("Three spheres");
print::realization_diagnostics(&realization);
if let Ok(ConfigNeighborhood{ config, .. }) = realization.result {
print::gram_matrix(&config);
}
print::loss_history(&realization.history);
}

View file

@ -1,17 +0,0 @@
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8"/>
<title>dyna3</title>
<link data-trunk rel="css" href="main.css"/>
<link href="https://fonts.bunny.net/css?family=fira-sans:ital,wght@0,400;1,400&display=swap" rel="stylesheet">
<link href="https://fonts.bunny.net/css?family=noto-emoji:wght@400&text=%f0%9f%94%97%e2%9a%a0&display=swap" rel="stylesheet">
<!--
the Charming visualization crate, which we use to show engine diagnostics,
depends the ECharts JavaScript package
-->
<script src="https://cdn.jsdelivr.net/npm/echarts@5.5.1/dist/echarts.min.js"></script>
</head>
<body></body>
</html>

View file

@ -1,240 +0,0 @@
:root {
--text: #fcfcfc; /* almost white */
--text-bright: white;
--text-invalid: #f58fc2; /* bright pink */
--border: #555; /* light gray */
--border-focus-dark: #aaa; /* bright gray */
--border-focus-light: white;
--border-invalid: #70495c; /* dusky pink */
--selection-highlight: #444; /* medium gray */
--page-background: #222; /* dark gray */
--display-background: #020202; /* almost black */
}
body {
margin: 0px;
color: var(--text);
background-color: var(--page-background);
font-family: 'Fira Sans', sans-serif;
}
.invalid {
color: var(--text-invalid);
}
.status {
width: 20px;
text-align: center;
font-family: 'Noto Emoji';
font-style: normal;
}
/* sidebar */
#sidebar {
display: flex;
flex-direction: column;
float: left;
width: 500px;
height: 100vh;
margin: 0px;
padding: 0px;
border-width: 0px 1px 0px 0px;
border-style: solid;
border-color: var(--border);
}
/* add-remove */
#add-remove {
display: flex;
gap: 8px;
margin: 8px;
}
#add-remove > button {
height: 32px;
}
/* KLUDGE */
/*
for convenience, we're using emoji as temporary icons for some buttons. these
buttons need to be displayed in an emoji font
*/
#add-remove > button.emoji {
width: 32px;
font-family: 'Noto Emoji', sans-serif;
font-size: large;
}
/* outline */
#outline {
flex-grow: 1;
margin: 0px;
padding: 0px;
overflow-y: scroll;
}
li {
user-select: none;
}
summary {
display: flex;
}
summary.selected {
color: var(--text-bright);
background-color: var(--selection-highlight);
}
summary > div, .regulator {
padding-top: 4px;
padding-bottom: 4px;
}
.element, .regulator {
display: flex;
flex-grow: 1;
padding-left: 8px;
padding-right: 8px;
}
.element > input {
margin-left: 8px;
}
.element-switch {
width: 18px;
padding-left: 2px;
text-align: center;
}
details:has(li) .element-switch::after {
content: '▸';
}
details[open]:has(li) .element-switch::after {
content: '▾';
}
.element-label {
flex-grow: 1;
}
.regulator-label {
flex-grow: 1;
}
.element-representation {
display: flex;
}
.element-representation > div {
padding: 2px 0px 0px 0px;
font-size: 10pt;
font-variant-numeric: tabular-nums;
text-align: right;
width: 56px;
}
.regulator {
font-style: italic;
}
.regulator-type {
padding: 2px 8px 0px 8px;
font-size: 10pt;
}
.regulator-input {
margin-right: 4px;
color: inherit;
background-color: inherit;
border: 1px solid var(--border);
border-radius: 2px;
}
.regulator-input::placeholder {
color: inherit;
opacity: 54%;
font-style: italic;
}
.regulator-input.constraint {
background-color: var(--display-background);
}
.regulator-input.invalid {
color: var(--text-invalid);
border-color: var(--border-invalid);
}
.regulator-input.invalid + .status::after, details:has(.invalid):not([open]) .status::after {
content: '⚠';
color: var(--text-invalid);
}
/* diagnostics */
#diagnostics {
margin: 10px;
}
#diagnostics-bar {
display: flex;
}
#realization-status {
display: flex;
flex-grow: 1;
}
#realization-status .status {
margin-right: 4px;
}
#realization-status :not(.status) {
flex-grow: 1;
}
#realization-status .status::after {
content: '✓';
}
#realization-status.invalid .status::after {
content: '⚠';
}
.diagnostics-panel {
margin-top: 10px;
min-height: 180px;
}
.diagnostics-chart {
background-color: var(--display-background);
border: 1px solid var(--border);
border-radius: 8px;
}
/* display */
#display {
float: left;
margin-left: 20px;
margin-top: 20px;
background-color: var(--display-background);
border: 1px solid var(--border);
border-radius: 16px;
}
#display:focus {
border-color: var(--border-focus-dark);
outline: none;
}
input:focus {
border-color: var(--border-focus-light);
outline: none;
}

View file

@ -1,20 +0,0 @@
# run all Cargo examples, as described here:
#
# Karol Kuczmarski. "Add examples to your Rust libraries"
# http://xion.io/post/code/rust-examples.html
#
# you should invoke this script by calling `sh` or another interpreter, rather
# than calling `souce`, to ensure that the script can find the manifest file for
# the application prototype
# find the manifest file for the application prototype
MANIFEST="$(dirname -- $0)/Cargo.toml"
# set up the command that runs each example
RUN_EXAMPLE="cargo run --manifest-path $MANIFEST --example"
# run the examples
$RUN_EXAMPLE irisawa-hexlet; echo
$RUN_EXAMPLE three-spheres; echo
$RUN_EXAMPLE point-on-sphere; echo
$RUN_EXAMPLE kaleidocycle

View file

@ -1,935 +0,0 @@
use nalgebra::{DMatrix, DVector, DVectorView};
use std::{
cell::Cell,
collections::{BTreeMap, BTreeSet},
cmp::Ordering,
fmt,
fmt::{Debug, Formatter},
hash::{Hash, Hasher},
rc::Rc,
sync::{atomic, atomic::AtomicU64}
};
use sycamore::prelude::*;
use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */
use crate::{
components::{display::DisplayItem, outline::OutlineItem},
engine::{
Q,
change_half_curvature,
local_unif_to_std,
point,
project_point_to_normalized,
project_sphere_to_normalized,
realize_gram,
sphere,
ConfigNeighborhood,
ConfigSubspace,
ConstraintProblem,
DescentHistory,
Realization
},
specified::SpecifiedValue
};
pub type ElementColor = [f32; 3];
/* KLUDGE */
// we should reconsider this design when we build a system for switching between
// assemblies. at that point, we might want to switch to hierarchical keys,
// where each each item has a key that identifies it within its assembly and
// each assembly has a key that identifies it within the sesssion
static NEXT_SERIAL: AtomicU64 = AtomicU64::new(0);
pub trait Serial {
// a serial number that uniquely identifies this element
fn serial(&self) -> u64;
// take the next serial number, panicking if that was the last one left
fn next_serial() -> u64 where Self: Sized {
// the technique we use to panic on overflow is taken from _Rust Atomics
// and Locks_, by Mara Bos
//
// https://marabos.nl/atomics/atomics.html#example-handle-overflow
//
NEXT_SERIAL.fetch_update(
atomic::Ordering::SeqCst, atomic::Ordering::SeqCst,
|serial| serial.checked_add(1)
).expect("Out of serial numbers for elements")
}
}
impl Hash for dyn Serial {
fn hash<H: Hasher>(&self, state: &mut H) {
self.serial().hash(state)
}
}
impl PartialEq for dyn Serial {
fn eq(&self, other: &Self) -> bool {
self.serial() == other.serial()
}
}
impl Eq for dyn Serial {}
impl PartialOrd for dyn Serial {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for dyn Serial {
fn cmp(&self, other: &Self) -> Ordering {
self.serial().cmp(&other.serial())
}
}
pub trait ProblemPoser {
fn pose(&self, problem: &mut ConstraintProblem);
}
pub trait Element: Serial + ProblemPoser + DisplayItem {
// the default identifier for an element of this type
fn default_id() -> String where Self: Sized;
// the default example of an element of this type
fn default(id: String, id_num: u64) -> Self where Self: Sized;
// the default regulators that come with this element
fn default_regulators(self: Rc<Self>) -> Vec<Rc<dyn Regulator>> {
Vec::new()
}
fn id(&self) -> &String;
fn label(&self) -> &String;
fn representation(&self) -> Signal<DVector<f64>>;
fn ghost(&self) -> Signal<bool>;
// the regulators the element is subject to. the assembly that owns the
// element is responsible for keeping this set up to date
fn regulators(&self) -> Signal<BTreeSet<Rc<dyn Regulator>>>;
// project a representation vector for this kind of element onto its
// normalization variety
fn project_to_normalized(&self, rep: &mut DVector<f64>);
// the configuration matrix column index that was assigned to the element
// last time the assembly was realized, or `None` if the element has never
// been through a realization
fn column_index(&self) -> Option<usize>;
// assign the element a configuration matrix column index. this method must
// be used carefully to preserve invariant (1), described in the comment on
// the `tangent` field of the `Assembly` structure
fn set_column_index(&self, index: usize);
}
impl Debug for dyn Element {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
self.id().fmt(f)
}
}
impl Hash for dyn Element {
fn hash<H: Hasher>(&self, state: &mut H) {
<dyn Serial>::hash(self, state)
}
}
impl PartialEq for dyn Element {
fn eq(&self, other: &Self) -> bool {
<dyn Serial>::eq(self, other)
}
}
impl Eq for dyn Element {}
impl PartialOrd for dyn Element {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
<dyn Serial>::partial_cmp(self, other)
}
}
impl Ord for dyn Element {
fn cmp(&self, other: &Self) -> Ordering {
<dyn Serial>::cmp(self, other)
}
}
pub struct Sphere {
pub id: String,
pub label: String,
pub color: ElementColor,
pub representation: Signal<DVector<f64>>,
pub ghost: Signal<bool>,
pub regulators: Signal<BTreeSet<Rc<dyn Regulator>>>,
serial: u64,
column_index: Cell<Option<usize>>
}
impl Sphere {
const CURVATURE_COMPONENT: usize = 3;
pub fn new(
id: String,
label: String,
color: ElementColor,
representation: DVector<f64>
) -> Sphere {
Sphere {
id: id,
label: label,
color: color,
representation: create_signal(representation),
ghost: create_signal(false),
regulators: create_signal(BTreeSet::new()),
serial: Self::next_serial(),
column_index: None.into()
}
}
}
impl Element for Sphere {
fn default_id() -> String {
"sphere".to_string()
}
fn default(id: String, id_num: u64) -> Sphere {
Sphere::new(
id,
format!("Sphere {id_num}"),
[0.75_f32, 0.75_f32, 0.75_f32],
sphere(0.0, 0.0, 0.0, 1.0)
)
}
fn default_regulators(self: Rc<Self>) -> Vec<Rc<dyn Regulator>> {
vec![Rc::new(HalfCurvatureRegulator::new(self))]
}
fn id(&self) -> &String {
&self.id
}
fn label(&self) -> &String {
&self.label
}
fn representation(&self) -> Signal<DVector<f64>> {
self.representation
}
fn ghost(&self) -> Signal<bool> {
self.ghost
}
fn regulators(&self) -> Signal<BTreeSet<Rc<dyn Regulator>>> {
self.regulators
}
fn project_to_normalized(&self, rep: &mut DVector<f64>) {
project_sphere_to_normalized(rep);
}
fn column_index(&self) -> Option<usize> {
self.column_index.get()
}
fn set_column_index(&self, index: usize) {
self.column_index.set(Some(index));
}
}
impl Serial for Sphere {
fn serial(&self) -> u64 {
self.serial
}
}
impl ProblemPoser for Sphere {
fn pose(&self, problem: &mut ConstraintProblem) {
let index = self.column_index().expect(
format!("Sphere \"{}\" should be indexed before writing problem data", self.id).as_str()
);
problem.gram.push_sym(index, index, 1.0);
problem.guess.set_column(index, &self.representation.get_clone_untracked());
}
}
pub struct Point {
pub id: String,
pub label: String,
pub color: ElementColor,
pub representation: Signal<DVector<f64>>,
pub ghost: Signal<bool>,
pub regulators: Signal<BTreeSet<Rc<dyn Regulator>>>,
serial: u64,
column_index: Cell<Option<usize>>
}
impl Point {
const WEIGHT_COMPONENT: usize = 3;
pub fn new(
id: String,
label: String,
color: ElementColor,
representation: DVector<f64>
) -> Point {
Point {
id,
label,
color,
representation: create_signal(representation),
ghost: create_signal(false),
regulators: create_signal(BTreeSet::new()),
serial: Self::next_serial(),
column_index: None.into()
}
}
}
impl Element for Point {
fn default_id() -> String {
"point".to_string()
}
fn default(id: String, id_num: u64) -> Point {
Point::new(
id,
format!("Point {id_num}"),
[0.75_f32, 0.75_f32, 0.75_f32],
point(0.0, 0.0, 0.0)
)
}
fn id(&self) -> &String {
&self.id
}
fn label(&self) -> &String {
&self.label
}
fn representation(&self) -> Signal<DVector<f64>> {
self.representation
}
fn ghost(&self) -> Signal<bool> {
self.ghost
}
fn regulators(&self) -> Signal<BTreeSet<Rc<dyn Regulator>>> {
self.regulators
}
fn project_to_normalized(&self, rep: &mut DVector<f64>) {
project_point_to_normalized(rep);
}
fn column_index(&self) -> Option<usize> {
self.column_index.get()
}
fn set_column_index(&self, index: usize) {
self.column_index.set(Some(index));
}
}
impl Serial for Point {
fn serial(&self) -> u64 {
self.serial
}
}
impl ProblemPoser for Point {
fn pose(&self, problem: &mut ConstraintProblem) {
let index = self.column_index().expect(
format!("Point \"{}\" should be indexed before writing problem data", self.id).as_str()
);
problem.gram.push_sym(index, index, 0.0);
problem.frozen.push(Point::WEIGHT_COMPONENT, index, 0.5);
problem.guess.set_column(index, &self.representation.get_clone_untracked());
}
}
pub trait Regulator: Serial + ProblemPoser + OutlineItem {
fn subjects(&self) -> Vec<Rc<dyn Element>>;
fn measurement(&self) -> ReadSignal<f64>;
fn set_point(&self) -> Signal<SpecifiedValue>;
// this method is used to responsively precondition the assembly for
// realization when the regulator becomes a constraint, or is edited while
// acting as a constraint. it should track the set point, do any desired
// preconditioning when the set point is present, and use its return value
// to report whether the set is present. the default implementation does no
// preconditioning
fn try_activate(&self) -> bool {
self.set_point().with(|set_pt| set_pt.is_present())
}
}
impl Hash for dyn Regulator {
fn hash<H: Hasher>(&self, state: &mut H) {
<dyn Serial>::hash(self, state)
}
}
impl PartialEq for dyn Regulator {
fn eq(&self, other: &Self) -> bool {
<dyn Serial>::eq(self, other)
}
}
impl Eq for dyn Regulator {}
impl PartialOrd for dyn Regulator {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
<dyn Serial>::partial_cmp(self, other)
}
}
impl Ord for dyn Regulator {
fn cmp(&self, other: &Self) -> Ordering {
<dyn Serial>::cmp(self, other)
}
}
pub struct InversiveDistanceRegulator {
pub subjects: [Rc<dyn Element>; 2],
pub measurement: ReadSignal<f64>,
pub set_point: Signal<SpecifiedValue>,
serial: u64
}
impl InversiveDistanceRegulator {
pub fn new(subjects: [Rc<dyn Element>; 2]) -> InversiveDistanceRegulator {
let representations = subjects.each_ref().map(|subj| subj.representation());
let measurement = create_memo(move || {
representations[0].with(|rep_0|
representations[1].with(|rep_1|
rep_0.dot(&(&*Q * rep_1))
)
)
});
let set_point = create_signal(SpecifiedValue::from_empty_spec());
let serial = Self::next_serial();
InversiveDistanceRegulator { subjects, measurement, set_point, serial }
}
}
impl Regulator for InversiveDistanceRegulator {
fn subjects(&self) -> Vec<Rc<dyn Element>> {
self.subjects.clone().into()
}
fn measurement(&self) -> ReadSignal<f64> {
self.measurement
}
fn set_point(&self) -> Signal<SpecifiedValue> {
self.set_point
}
}
impl Serial for InversiveDistanceRegulator {
fn serial(&self) -> u64 {
self.serial
}
}
impl ProblemPoser for InversiveDistanceRegulator {
fn pose(&self, problem: &mut ConstraintProblem) {
self.set_point.with_untracked(|set_pt| {
if let Some(val) = set_pt.value {
let [row, col] = self.subjects.each_ref().map(
|subj| subj.column_index().expect(
"Subjects should be indexed before inversive distance regulator writes problem data"
)
);
problem.gram.push_sym(row, col, val);
}
});
}
}
pub struct HalfCurvatureRegulator {
pub subject: Rc<dyn Element>,
pub measurement: ReadSignal<f64>,
pub set_point: Signal<SpecifiedValue>,
serial: u64
}
impl HalfCurvatureRegulator {
pub fn new(subject: Rc<dyn Element>) -> HalfCurvatureRegulator {
let measurement = subject.representation().map(
|rep| rep[Sphere::CURVATURE_COMPONENT]
);
let set_point = create_signal(SpecifiedValue::from_empty_spec());
let serial = Self::next_serial();
HalfCurvatureRegulator { subject, measurement, set_point, serial }
}
}
impl Regulator for HalfCurvatureRegulator {
fn subjects(&self) -> Vec<Rc<dyn Element>> {
vec![self.subject.clone()]
}
fn measurement(&self) -> ReadSignal<f64> {
self.measurement
}
fn set_point(&self) -> Signal<SpecifiedValue> {
self.set_point
}
fn try_activate(&self) -> bool {
match self.set_point.with(|set_pt| set_pt.value) {
Some(half_curv) => {
self.subject.representation().update(
|rep| change_half_curvature(rep, half_curv)
);
true
}
None => false
}
}
}
impl Serial for HalfCurvatureRegulator {
fn serial(&self) -> u64 {
self.serial
}
}
impl ProblemPoser for HalfCurvatureRegulator {
fn pose(&self, problem: &mut ConstraintProblem) {
self.set_point.with_untracked(|set_pt| {
if let Some(val) = set_pt.value {
let col = self.subject.column_index().expect(
"Subject should be indexed before half-curvature regulator writes problem data"
);
problem.frozen.push(Sphere::CURVATURE_COMPONENT, col, val);
}
});
}
}
// the velocity is expressed in uniform coordinates
pub struct ElementMotion<'a> {
pub element: Rc<dyn Element>,
pub velocity: DVectorView<'a, f64>
}
type AssemblyMotion<'a> = Vec<ElementMotion<'a>>;
// a complete, view-independent description of an assembly
#[derive(Clone)]
pub struct Assembly {
// elements and regulators
pub elements: Signal<BTreeSet<Rc<dyn Element>>>,
pub regulators: Signal<BTreeSet<Rc<dyn Regulator>>>,
// solution variety tangent space. the basis vectors are stored in
// configuration matrix format, ordered according to the elements' column
// indices. when you realize the assembly, every element that's present
// during realization gets a column index and is reflected in the tangent
// space. since the methods in this module never assign column indices
// without later realizing the assembly, we get the following invariant:
//
// (1) if an element has a column index, its tangent motions can be found
// in that column of the tangent space basis matrices
//
pub tangent: Signal<ConfigSubspace>,
// indexing
pub elements_by_id: Signal<BTreeMap<String, Rc<dyn Element>>>,
// realization control
pub keep_realized: Signal<bool>,
pub needs_realization: Signal<bool>,
// realization diagnostics
pub realization_status: Signal<Result<(), String>>,
pub descent_history: Signal<DescentHistory>
}
impl Assembly {
pub fn new() -> Assembly {
// create an assembly
let assembly = Assembly {
elements: create_signal(BTreeSet::new()),
regulators: create_signal(BTreeSet::new()),
tangent: create_signal(ConfigSubspace::zero(0)),
elements_by_id: create_signal(BTreeMap::default()),
keep_realized: create_signal(true),
needs_realization: create_signal(false),
realization_status: create_signal(Ok(())),
descent_history: create_signal(DescentHistory::new())
};
// realize the assembly whenever it becomes simultaneously true that
// we're trying to keep it realized and it needs realization
let assembly_for_effect = assembly.clone();
create_effect(move || {
let should_realize = assembly_for_effect.keep_realized.get()
&& assembly_for_effect.needs_realization.get();
if should_realize {
assembly_for_effect.realize();
}
});
assembly
}
// --- inserting elements and regulators ---
// insert an element into the assembly without checking whether we already
// have an element with the same identifier. any element that does have the
// same identifier will get kicked out of the `elements_by_id` index
fn insert_element_unchecked(&self, elt: impl Element + 'static) {
// insert the element
let id = elt.id().clone();
let elt_rc = Rc::new(elt);
self.elements.update(|elts| elts.insert(elt_rc.clone()));
self.elements_by_id.update(|elts_by_id| elts_by_id.insert(id, elt_rc.clone()));
// create and insert the element's default regulators
for reg in elt_rc.default_regulators() {
self.insert_regulator(reg);
}
}
pub fn try_insert_element(&self, elt: impl Element + 'static) -> bool {
let can_insert = self.elements_by_id.with_untracked(
|elts_by_id| !elts_by_id.contains_key(elt.id())
);
if can_insert {
self.insert_element_unchecked(elt);
}
can_insert
}
pub fn insert_element_default<T: Element + 'static>(&self) {
// find the next unused identifier in the default sequence
let default_id = T::default_id();
let mut id_num = 1;
let mut id = format!("{default_id}{id_num}");
while self.elements_by_id.with_untracked(
|elts_by_id| elts_by_id.contains_key(&id)
) {
id_num += 1;
id = format!("{default_id}{id_num}");
}
// create and insert the default example of `T`
let _ = self.insert_element_unchecked(T::default(id, id_num));
}
pub fn insert_regulator(&self, regulator: Rc<dyn Regulator>) {
// add the regulator to the assembly's regulator list
self.regulators.update(
|regs| regs.insert(regulator.clone())
);
// add the regulator to each subject's regulator list
let subject_regulators: Vec<_> = regulator.subjects().into_iter().map(
|subj| subj.regulators()
).collect();
for regulators in subject_regulators {
regulators.update(|regs| regs.insert(regulator.clone()));
}
// request a realization when the regulator becomes a constraint, or is
// edited while acting as a constraint
let self_for_effect = self.clone();
create_effect(move || {
/* DEBUG */
// log the regulator update
console_log!("Updated regulator with subjects {:?}", regulator.subjects());
if regulator.try_activate() {
self_for_effect.needs_realization.set(true);
}
});
/* DEBUG */
// print an updated list of regulators
console_log!("Regulators:");
self.regulators.with_untracked(|regs| {
for reg in regs.into_iter() {
console_log!(
" {:?}: {}",
reg.subjects(),
reg.set_point().with_untracked(
|set_pt| {
let spec = &set_pt.spec;
if spec.is_empty() {
"__".to_string()
} else {
spec.clone()
}
}
)
);
}
});
}
// --- realization ---
pub fn realize(&self) {
// index the elements
self.elements.update_silent(|elts| {
for (index, elt) in elts.iter().enumerate() {
elt.set_column_index(index);
}
});
// set up the constraint problem
let problem = self.elements.with_untracked(|elts| {
let mut problem = ConstraintProblem::new(elts.len());
for elt in elts {
elt.pose(&mut problem);
}
self.regulators.with_untracked(|regs| {
for reg in regs {
reg.pose(&mut problem);
}
});
problem
});
/* DEBUG */
// log the Gram matrix
console_log!("Gram matrix:\n{}", problem.gram);
/* DEBUG */
// log the initial configuration matrix
console_log!("Old configuration:{:>8.3}", problem.guess);
// look for a configuration with the given Gram matrix
let Realization { result, history } = realize_gram(
&problem, 1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
/* DEBUG */
// report the outcome of the search in the browser console
if let Err(ref message) = result {
console_log!("❌️ {message}");
} else {
console_log!("✅️ Target accuracy achieved!");
}
console_log!("Steps: {}", history.scaled_loss.len() - 1);
console_log!("Loss: {}", history.scaled_loss.last().unwrap());
// report the loss history
self.descent_history.set(history);
match result {
Ok(ConfigNeighborhood { config, nbhd: tangent }) => {
/* DEBUG */
// report the tangent dimension
console_log!("Tangent dimension: {}", tangent.dim());
// report the realization status
self.realization_status.set(Ok(()));
// read out the solution
for elt in self.elements.get_clone_untracked() {
elt.representation().update(
|rep| rep.set_column(0, &config.column(elt.column_index().unwrap()))
);
}
// save the tangent space
self.tangent.set_silent(tangent);
// clear the realization request flag
self.needs_realization.set(false);
},
Err(message) => {
// report the realization status. the `Err(message)` we're
// setting the status to has a different type than the
// `Err(message)` we received from the match: we're changing the
// `Ok` type from `Realization` to `()`
self.realization_status.set(Err(message))
}
}
}
// --- deformation ---
// project the given motion to the tangent space of the solution variety and
// move the assembly along it. the implementation is based on invariant (1)
// from above and the following additional invariant:
//
// (2) if an element is affected by a constraint, it has a column index
//
// we have this invariant because the assembly gets realized each time you
// add a constraint
pub fn deform(&self, motion: AssemblyMotion) {
/* KLUDGE */
// when the tangent space is zero, deformation won't do anything, but
// the attempt to deform should be registered in the UI. this console
// message will do for now
if self.tangent.with(|tan| tan.dim() <= 0 && tan.assembly_dim() > 0) {
console::log_1(&JsValue::from("The assembly is rigid"));
}
// give a column index to each moving element that doesn't have one yet.
// this temporarily breaks invariant (1), but the invariant will be
// restored when we realize the assembly at the end of the deformation.
// in the process, we find out how many matrix columns we'll need to
// hold the deformation
let realized_dim = self.tangent.with(|tan| tan.assembly_dim());
let motion_dim = {
let mut next_column_index = realized_dim;
for elt_motion in motion.iter() {
let moving_elt = &elt_motion.element;
if moving_elt.column_index().is_none() {
moving_elt.set_column_index(next_column_index);
next_column_index += 1;
}
}
next_column_index
};
// project the element motions onto the tangent space of the solution
// variety and sum them to get a deformation of the whole assembly. the
// matrix `motion_proj` that holds the deformation has extra columns for
// any moving elements that aren't reflected in the saved tangent space
const ELEMENT_DIM: usize = 5;
let mut motion_proj = DMatrix::zeros(ELEMENT_DIM, motion_dim);
for elt_motion in motion {
// we can unwrap the column index because we know that every moving
// element has one at this point
let column_index = elt_motion.element.column_index().unwrap();
if column_index < realized_dim {
// this element had a column index when we started, so by
// invariant (1), it's reflected in the tangent space
let mut target_columns = motion_proj.columns_mut(0, realized_dim);
target_columns += self.tangent.with(
|tan| tan.proj(&elt_motion.velocity, column_index)
);
} else {
// this element didn't have a column index when we started, so
// by invariant (2), it's unconstrained
let mut target_column = motion_proj.column_mut(column_index);
let unif_to_std = elt_motion.element.representation().with_untracked(
|rep| local_unif_to_std(rep.as_view())
);
target_column += unif_to_std * elt_motion.velocity;
}
}
// step the assembly along the deformation. this changes the elements'
// normalizations, so we restore those afterward
for elt in self.elements.get_clone_untracked() {
elt.representation().update_silent(|rep| {
match elt.column_index() {
Some(column_index) => {
// step the element along the deformation and then
// restore its normalization
*rep += motion_proj.column(column_index);
elt.project_to_normalized(rep);
},
None => {
console_log!("No velocity to unpack for fresh element \"{}\"", elt.id())
}
};
});
}
// request a realization to bring the configuration back onto the
// solution variety. this also gets the elements' column indices and the
// saved tangent space back in sync
self.needs_realization.set(true);
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::engine;
#[test]
#[should_panic(expected = "Sphere \"sphere\" should be indexed before writing problem data")]
fn unindexed_element_test() {
let _ = create_root(|| {
let elt = Sphere::default("sphere".to_string(), 0);
elt.pose(&mut ConstraintProblem::new(1));
});
}
#[test]
#[should_panic(expected = "Subjects should be indexed before inversive distance regulator writes problem data")]
fn unindexed_subject_test_inversive_distance() {
let _ = create_root(|| {
let subjects = [0, 1].map(
|k| Rc::new(Sphere::default(format!("sphere{k}"), k)) as Rc<dyn Element>
);
subjects[0].set_column_index(0);
InversiveDistanceRegulator {
subjects: subjects,
measurement: create_memo(|| 0.0),
set_point: create_signal(SpecifiedValue::try_from("0.0".to_string()).unwrap()),
serial: InversiveDistanceRegulator::next_serial()
}.pose(&mut ConstraintProblem::new(2));
});
}
#[test]
fn curvature_drift_test() {
const INITIAL_RADIUS: f64 = 0.25;
let _ = create_root(|| {
// set up an assembly containing a single sphere centered at the
// origin
let assembly = Assembly::new();
let sphere_id = "sphere0";
let _ = assembly.try_insert_element(
// we create the sphere by hand for two reasons: to choose the
// curvature (which can affect drift rate) and to make the test
// independent of `Sphere::default`
Sphere::new(
String::from(sphere_id),
String::from("Sphere 0"),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(0.0, 0.0, 0.0, INITIAL_RADIUS)
)
);
// nudge the sphere repeatedly along the `z` axis
const STEP_SIZE: f64 = 0.0025;
const STEP_CNT: usize = 400;
let sphere = assembly.elements_by_id.with(|elts_by_id| elts_by_id[sphere_id].clone());
let velocity = DVector::from_column_slice(&[0.0, 0.0, STEP_SIZE, 0.0]);
for _ in 0..STEP_CNT {
assembly.deform(
vec![
ElementMotion {
element: sphere.clone(),
velocity: velocity.as_view()
}
]
);
}
// check how much the sphere's curvature has drifted
const INITIAL_HALF_CURV: f64 = 0.5 / INITIAL_RADIUS;
const DRIFT_TOL: f64 = 0.015;
let final_half_curv = sphere.representation().with_untracked(
|rep| rep[Sphere::CURVATURE_COMPONENT]
);
assert!((final_half_curv / INITIAL_HALF_CURV - 1.0).abs() < DRIFT_TOL);
});
}
}

View file

@ -1,5 +0,0 @@
pub mod add_remove;
pub mod diagnostics;
pub mod display;
pub mod outline;
pub mod test_assembly_chooser;

View file

@ -1,54 +0,0 @@
use std::rc::Rc;
use sycamore::prelude::*;
use super::test_assembly_chooser::TestAssemblyChooser;
use crate::{
AppState,
assembly::{InversiveDistanceRegulator, Point, Sphere}
};
#[component]
pub fn AddRemove() -> View {
view! {
div(id="add-remove") {
button(
on:click=|_| {
let state = use_context::<AppState>();
state.assembly.insert_element_default::<Sphere>();
}
) { "Add sphere" }
button(
on:click=|_| {
let state = use_context::<AppState>();
state.assembly.insert_element_default::<Point>();
}
) { "Add point" }
button(
class="emoji", /* KLUDGE */ // for convenience, we're using an emoji as a temporary icon for this button
disabled={
let state = use_context::<AppState>();
state.selection.with(|sel| sel.len() != 2)
},
on:click=|_| {
let state = use_context::<AppState>();
let subjects: [_; 2] = state.selection.with(
// the button is only enabled when two elements are
// selected, so we know the cast to a two-element array
// will succeed
|sel| sel
.clone()
.into_iter()
.collect::<Vec<_>>()
.try_into()
.unwrap()
);
state.assembly.insert_regulator(
Rc::new(InversiveDistanceRegulator::new(subjects))
);
state.selection.update(|sel| sel.clear());
}
) { "🔗" }
TestAssemblyChooser {}
}
}
}

View file

@ -1,258 +0,0 @@
use charming::{
Chart,
WasmRenderer,
component::{Axis, DataZoom, Grid},
element::{AxisType, Symbol},
series::{Line, Scatter},
};
use sycamore::prelude::*;
use crate::AppState;
#[derive(Clone)]
struct DiagnosticsState {
active_tab: Signal<String>
}
impl DiagnosticsState {
fn new(initial_tab: String) -> DiagnosticsState {
DiagnosticsState {
active_tab: create_signal(initial_tab)
}
}
}
// a realization status indicator
#[component]
fn RealizationStatus() -> View {
let state = use_context::<AppState>();
let realization_status = state.assembly.realization_status;
view! {
div(
id="realization-status",
class=realization_status.with(
|status| match status {
Ok(_) => "",
Err(_) => "invalid"
}
)
) {
div(class="status")
div {
(realization_status.with(
|status| match status {
Ok(_) => "Target accuracy achieved".to_string(),
Err(message) => message.clone()
}
))
}
}
}
}
fn into_log10_time_point((step, value): (usize, f64)) -> Vec<Option<f64>> {
vec![
Some(step as f64),
if value == 0.0 { None } else { Some(value.abs().log10()) }
]
}
// the loss history from the last realization
#[component]
fn LossHistory() -> View {
const CONTAINER_ID: &str = "loss-history";
let state = use_context::<AppState>();
let renderer = WasmRenderer::new_opt(None, Some(178));
on_mount(move || {
create_effect(move || {
// get the loss history
let scaled_loss: Vec<_> = state.assembly.descent_history.with(
|history| history.scaled_loss
.iter()
.enumerate()
.map(|(step, &loss)| (step, loss))
.map(into_log10_time_point)
.collect()
);
// initialize the chart axes
let step_axis = Axis::new()
.type_(AxisType::Category)
.boundary_gap(false);
let scaled_loss_axis = Axis::new();
// load the chart data. when there's no history, we load the data
// point (0, None) to clear the chart. it would feel more natural to
// load empty data vectors, but that turns out not to clear the
// chart: it instead leads to previous data being re-used
let scaled_loss_series = Line::new().data(
if scaled_loss.len() > 0 {
scaled_loss
} else {
vec![vec![Some(0.0), None::<f64>]]
}
);
let chart = Chart::new()
.animation(false)
.data_zoom(DataZoom::new().y_axis_index(0).right(40))
.x_axis(step_axis)
.y_axis(scaled_loss_axis)
.grid(Grid::new().top(20).right(80).bottom(30).left(60))
.series(scaled_loss_series);
renderer.render(CONTAINER_ID, &chart).unwrap();
});
});
view! {
div(id=CONTAINER_ID, class="diagnostics-chart")
}
}
// the spectrum of the Hessian during the last realization
#[component]
fn SpectrumHistory() -> View {
const CONTAINER_ID: &str = "spectrum-history";
let state = use_context::<AppState>();
let renderer = WasmRenderer::new(478, 178);
on_mount(move || {
create_effect(move || {
// get the spectrum of the Hessian at each step, split into its
// positive, negative, and strictly-zero parts
let (
hess_eigvals_zero,
hess_eigvals_nonzero
): (Vec<_>, Vec<_>) = state.assembly.descent_history.with(
|history| history.hess_eigvals
.iter()
.enumerate()
.map(
|(step, eigvals)| eigvals.iter().map(
move |&val| (step, val)
)
)
.flatten()
.partition(|&(_, val)| val == 0.0)
);
let zero_level = hess_eigvals_nonzero
.iter()
.map(|(_, val)| val.abs())
.reduce(f64::min)
.map(|val| 0.1 * val)
.unwrap_or(1.0);
let (
hess_eigvals_pos,
hess_eigvals_neg
): (Vec<_>, Vec<_>) = hess_eigvals_nonzero
.into_iter()
.partition(|&(_, val)| val > 0.0);
// initialize the chart axes
let step_axis = Axis::new()
.type_(AxisType::Category)
.boundary_gap(false);
let eigval_axis = Axis::new();
// load the chart data. when there's no history, we load the data
// point (0, None) to clear the chart. it would feel more natural to
// load empty data vectors, but that turns out not to clear the
// chart: it instead leads to previous data being re-used
let eigval_series_pos = Scatter::new()
.symbol_size(4.5)
.data(
if hess_eigvals_pos.len() > 0 {
hess_eigvals_pos
.into_iter()
.map(into_log10_time_point)
.collect()
} else {
vec![vec![Some(0.0), None::<f64>]]
}
);
let eigval_series_neg = Scatter::new()
.symbol(Symbol::Diamond)
.symbol_size(6.0)
.data(
if hess_eigvals_neg.len() > 0 {
hess_eigvals_neg
.into_iter()
.map(into_log10_time_point)
.collect()
} else {
vec![vec![Some(0.0), None::<f64>]]
}
);
let eigval_series_zero = Scatter::new()
.symbol(Symbol::Triangle)
.symbol_size(5.0)
.data(
if hess_eigvals_zero.len() > 0 {
hess_eigvals_zero
.into_iter()
.map(|(step, _)| (step, zero_level))
.map(into_log10_time_point)
.collect()
} else {
vec![vec![Some(0.0), None::<f64>]]
}
);
let chart = Chart::new()
.animation(false)
.data_zoom(DataZoom::new().y_axis_index(0).right(40))
.x_axis(step_axis)
.y_axis(eigval_axis)
.grid(Grid::new().top(20).right(80).bottom(30).left(60))
.series(eigval_series_pos)
.series(eigval_series_neg)
.series(eigval_series_zero);
renderer.render(CONTAINER_ID, &chart).unwrap();
});
});
view! {
div(id=CONTAINER_ID, class="diagnostics-chart")
}
}
#[component(inline_props)]
fn DiagnosticsPanel(name: &'static str, children: Children) -> View {
let diagnostics_state = use_context::<DiagnosticsState>();
view! {
div(
class="diagnostics-panel",
"hidden"=diagnostics_state.active_tab.with(
|active_tab| {
if active_tab == name {
None
} else {
Some("")
}
}
)
) {
(children)
}
}
}
#[component]
pub fn Diagnostics() -> View {
let diagnostics_state = DiagnosticsState::new("loss".to_string());
let active_tab = diagnostics_state.active_tab.clone();
provide_context(diagnostics_state);
view! {
div(id="diagnostics") {
div(id="diagnostics-bar") {
RealizationStatus {}
select(bind:value=active_tab) {
option(value="loss") { "Loss" }
option(value="spectrum") { "Spectrum" }
}
}
DiagnosticsPanel(name="loss") { LossHistory {} }
DiagnosticsPanel(name="spectrum") { SpectrumHistory {} }
}
}
}

View file

@ -1,900 +0,0 @@
use core::array;
use nalgebra::{DMatrix, DVector, Rotation3, Vector3};
use std::rc::Rc;
use sycamore::{prelude::*, motion::create_raf};
use web_sys::{
console,
window,
KeyboardEvent,
MouseEvent,
WebGl2RenderingContext,
WebGlBuffer,
WebGlProgram,
WebGlShader,
WebGlUniformLocation,
wasm_bindgen::{JsCast, JsValue}
};
use crate::{
AppState,
assembly::{Element, ElementColor, ElementMotion, Point, Sphere}
};
// --- color ---
const COLOR_SIZE: usize = 3;
type ColorWithOpacity = [f32; COLOR_SIZE + 1];
fn combine_channels(color: ElementColor, opacity: f32) -> ColorWithOpacity {
let mut color_with_opacity = [0.0; COLOR_SIZE + 1];
color_with_opacity[..COLOR_SIZE].copy_from_slice(&color);
color_with_opacity[COLOR_SIZE] = opacity;
color_with_opacity
}
// --- scene data ---
struct SceneSpheres {
representations: Vec<DVector<f64>>,
colors_with_opacity: Vec<ColorWithOpacity>,
highlights: Vec<f32>
}
impl SceneSpheres {
fn new() -> SceneSpheres{
SceneSpheres {
representations: Vec::new(),
colors_with_opacity: Vec::new(),
highlights: Vec::new()
}
}
fn len_i32(&self) -> i32 {
self.representations.len().try_into().expect("Number of spheres must fit in a 32-bit integer")
}
fn push(&mut self, representation: DVector<f64>, color: ElementColor, opacity: f32, highlight: f32) {
self.representations.push(representation);
self.colors_with_opacity.push(combine_channels(color, opacity));
self.highlights.push(highlight);
}
}
struct ScenePoints {
representations: Vec<DVector<f64>>,
colors_with_opacity: Vec<ColorWithOpacity>,
highlights: Vec<f32>,
selections: Vec<f32>
}
impl ScenePoints {
fn new() -> ScenePoints {
ScenePoints {
representations: Vec::new(),
colors_with_opacity: Vec::new(),
highlights: Vec::new(),
selections: Vec::new()
}
}
fn push(&mut self, representation: DVector<f64>, color: ElementColor, opacity: f32, highlight: f32, selected: bool) {
self.representations.push(representation);
self.colors_with_opacity.push(combine_channels(color, opacity));
self.highlights.push(highlight);
self.selections.push(if selected { 1.0 } else { 0.0 });
}
}
pub struct Scene {
spheres: SceneSpheres,
points: ScenePoints
}
impl Scene {
fn new() -> Scene {
Scene {
spheres: SceneSpheres::new(),
points: ScenePoints::new()
}
}
}
pub trait DisplayItem {
fn show(&self, scene: &mut Scene, selected: bool);
// the smallest positive depth, represented as a multiple of `dir`, where
// the line generated by `dir` hits the element. returns `None` if the line
// misses the element
fn cast(&self, dir: Vector3<f64>, assembly_to_world: &DMatrix<f64>, pixel_size: f64) -> Option<f64>;
}
impl DisplayItem for Sphere {
fn show(&self, scene: &mut Scene, selected: bool) {
/* SCAFFOLDING */
const DEFAULT_OPACITY: f32 = 0.5;
const GHOST_OPACITY: f32 = 0.2;
const HIGHLIGHT: f32 = 0.2;
let representation = self.representation.get_clone_untracked();
let color = if selected { self.color.map(|channel| 0.2 + 0.8*channel) } else { self.color };
let opacity = if self.ghost.get() { GHOST_OPACITY } else { DEFAULT_OPACITY };
let highlight = if selected { 1.0 } else { HIGHLIGHT };
scene.spheres.push(representation, color, opacity, highlight);
}
// this method should be kept synchronized with `sphere_cast` in
// `spheres.frag`, which does essentially the same thing on the GPU side
fn cast(&self, dir: Vector3<f64>, assembly_to_world: &DMatrix<f64>, _pixel_size: f64) -> Option<f64> {
// if `a/b` is less than this threshold, we approximate
// `a*u^2 + b*u + c` by the linear function `b*u + c`
const DEG_THRESHOLD: f64 = 1e-9;
let rep = self.representation.with_untracked(|rep| assembly_to_world * rep);
let a = -rep[3] * dir.norm_squared();
let b = rep.rows_range(..3).dot(&dir);
let c = -rep[4];
let adjust = 4.0*a*c/(b*b);
if adjust < 1.0 {
// as long as `b` is non-zero, the linear approximation of
//
// a*u^2 + b*u + c
//
// at `u = 0` will reach zero at a finite depth `u_lin`. the root of
// the quadratic adjacent to `u_lin` is stored in `lin_root`. if
// both roots have the same sign, `lin_root` will be the one closer
// to `u = 0`
let square_rect_ratio = 1.0 + (1.0 - adjust).sqrt();
let lin_root = -(2.0*c)/b / square_rect_ratio;
if a.abs() > DEG_THRESHOLD * b.abs() {
if lin_root > 0.0 {
Some(lin_root)
} else {
let other_root = -b/(2.*a) * square_rect_ratio;
(other_root > 0.0).then_some(other_root)
}
} else {
(lin_root > 0.0).then_some(lin_root)
}
} else {
// the line through `dir` misses the sphere completely
None
}
}
}
impl DisplayItem for Point {
fn show(&self, scene: &mut Scene, selected: bool) {
/* SCAFFOLDING */
const GHOST_OPACITY: f32 = 0.4;
const HIGHLIGHT: f32 = 0.5;
let representation = self.representation.get_clone_untracked();
let color = if selected { self.color.map(|channel| 0.2 + 0.8*channel) } else { self.color };
let opacity = if self.ghost.get() { GHOST_OPACITY } else { 1.0 };
let highlight = if selected { 1.0 } else { HIGHLIGHT };
scene.points.push(representation, color, opacity, highlight, selected);
}
/* SCAFFOLDING */
fn cast(&self, dir: Vector3<f64>, assembly_to_world: &DMatrix<f64>, pixel_size: f64) -> Option<f64> {
let rep = self.representation.with_untracked(|rep| assembly_to_world * rep);
if rep[2] < 0.0 {
// this constant should be kept synchronized with `point.frag`
const POINT_RADIUS_PX: f64 = 4.0;
// find the radius of the point in screen projection units
let point_radius_proj = POINT_RADIUS_PX * pixel_size;
// find the squared distance between the screen projections of the
// ray and the point
let dir_proj = -dir.fixed_rows::<2>(0) / dir[2];
let rep_proj = -rep.fixed_rows::<2>(0) / rep[2];
let dist_sq = (dir_proj - rep_proj).norm_squared();
// if the ray hits the point, return its depth
if dist_sq < point_radius_proj * point_radius_proj {
Some(rep[2] / dir[2])
} else {
None
}
} else {
None
}
}
}
// --- WebGL utilities ---
fn compile_shader(
context: &WebGl2RenderingContext,
shader_type: u32,
source: &str,
) -> WebGlShader {
let shader = context.create_shader(shader_type).unwrap();
context.shader_source(&shader, source);
context.compile_shader(&shader);
shader
}
fn set_up_program(
context: &WebGl2RenderingContext,
vertex_shader_source: &str,
fragment_shader_source: &str
) -> WebGlProgram {
// compile the shaders
let vertex_shader = compile_shader(
&context,
WebGl2RenderingContext::VERTEX_SHADER,
vertex_shader_source,
);
let fragment_shader = compile_shader(
&context,
WebGl2RenderingContext::FRAGMENT_SHADER,
fragment_shader_source,
);
// create the program and attach the shaders
let program = context.create_program().unwrap();
context.attach_shader(&program, &vertex_shader);
context.attach_shader(&program, &fragment_shader);
context.link_program(&program);
/* DEBUG */
// report whether linking succeeded
let link_status = context
.get_program_parameter(&program, WebGl2RenderingContext::LINK_STATUS)
.as_bool()
.unwrap();
let link_msg = if link_status {
"Linked successfully"
} else {
"Linking failed"
};
console::log_1(&JsValue::from(link_msg));
program
}
fn get_uniform_array_locations<const N: usize>(
context: &WebGl2RenderingContext,
program: &WebGlProgram,
var_name: &str,
member_name_opt: Option<&str>
) -> [Option<WebGlUniformLocation>; N] {
array::from_fn(|n| {
let name = match member_name_opt {
Some(member_name) => format!("{var_name}[{n}].{member_name}"),
None => format!("{var_name}[{n}]")
};
context.get_uniform_location(&program, name.as_str())
})
}
// bind the given vertex buffer object to the given vertex attribute
fn bind_to_attribute(
context: &WebGl2RenderingContext,
attr_index: u32,
attr_size: i32,
buffer: &Option<WebGlBuffer>
) {
context.bind_buffer(WebGl2RenderingContext::ARRAY_BUFFER, buffer.as_ref());
context.vertex_attrib_pointer_with_i32(
attr_index,
attr_size,
WebGl2RenderingContext::FLOAT,
false, // don't normalize
0, // zero stride
0, // zero offset
);
}
// load the given data into a new vertex buffer object
fn load_new_buffer(
context: &WebGl2RenderingContext,
data: &[f32]
) -> Option<WebGlBuffer> {
// create a buffer and bind it to ARRAY_BUFFER
let buffer = context.create_buffer();
context.bind_buffer(WebGl2RenderingContext::ARRAY_BUFFER, buffer.as_ref());
// load the given data into the buffer. this block is unsafe because
// `Float32Array::view` creates a raw view into our module's
// `WebAssembly.Memory` buffer. allocating more memory will change the
// buffer, invalidating the view, so we have to make sure we don't allocate
// any memory until the view is dropped. we're okay here because the view is
// used as soon as it's created
unsafe {
context.buffer_data_with_array_buffer_view(
WebGl2RenderingContext::ARRAY_BUFFER,
&js_sys::Float32Array::view(&data),
WebGl2RenderingContext::STATIC_DRAW,
);
}
buffer
}
fn bind_new_buffer_to_attribute(
context: &WebGl2RenderingContext,
attr_index: u32,
attr_size: i32,
data: &[f32]
) {
let buffer = load_new_buffer(context, data);
bind_to_attribute(context, attr_index, attr_size, &buffer);
}
// the direction in camera space that a mouse event is pointing along
fn event_dir(event: &MouseEvent) -> (Vector3<f64>, f64) {
let target: web_sys::Element = event.target().unwrap().unchecked_into();
let rect = target.get_bounding_client_rect();
let width = rect.width();
let height = rect.height();
let shortdim = width.min(height);
// this constant should be kept synchronized with `spheres.frag` and
// `point.vert`
const FOCAL_SLOPE: f64 = 0.3;
(
Vector3::new(
FOCAL_SLOPE * (2.0*(f64::from(event.client_x()) - rect.left()) - width) / shortdim,
FOCAL_SLOPE * (2.0*(rect.bottom() - f64::from(event.client_y())) - height) / shortdim,
-1.0
),
FOCAL_SLOPE * 2.0 / shortdim
)
}
// --- display component ---
#[component]
pub fn Display() -> View {
let state = use_context::<AppState>();
// canvas
let display = create_node_ref();
// viewpoint
let assembly_to_world = create_signal(DMatrix::<f64>::identity(5, 5));
// navigation
let pitch_up = create_signal(0.0);
let pitch_down = create_signal(0.0);
let yaw_right = create_signal(0.0);
let yaw_left = create_signal(0.0);
let roll_ccw = create_signal(0.0);
let roll_cw = create_signal(0.0);
let zoom_in = create_signal(0.0);
let zoom_out = create_signal(0.0);
let turntable = create_signal(false); /* BENCHMARKING */
// manipulation
let translate_neg_x = create_signal(0.0);
let translate_pos_x = create_signal(0.0);
let translate_neg_y = create_signal(0.0);
let translate_pos_y = create_signal(0.0);
let translate_neg_z = create_signal(0.0);
let translate_pos_z = create_signal(0.0);
let shrink_neg = create_signal(0.0);
let shrink_pos = create_signal(0.0);
// change listener
let scene_changed = create_signal(true);
create_effect(move || {
state.assembly.elements.with(|elts| {
for elt in elts {
elt.representation().track();
elt.ghost().track();
}
});
state.selection.track();
scene_changed.set(true);
});
/* INSTRUMENTS */
const SAMPLE_PERIOD: i32 = 60;
let mut last_sample_time = 0.0;
let mut frames_since_last_sample = 0;
let mean_frame_interval = create_signal(0.0);
let assembly_for_raf = state.assembly.clone();
on_mount(move || {
// timing
let mut last_time = 0.0;
// viewpoint
const ROT_SPEED: f64 = 0.4; // in radians per second
const ZOOM_SPEED: f64 = 0.15; // multiplicative rate per second
const TURNTABLE_SPEED: f64 = 0.1; /* BENCHMARKING */
let mut orientation = DMatrix::<f64>::identity(5, 5);
let mut rotation = DMatrix::<f64>::identity(5, 5);
let mut location_z: f64 = 5.0;
// manipulation
const TRANSLATION_SPEED: f64 = 0.15; // in length units per second
const SHRINKING_SPEED: f64 = 0.15; // in length units per second
// display parameters
const LAYER_THRESHOLD: i32 = 0; /* DEBUG */
const DEBUG_MODE: i32 = 0; /* DEBUG */
/* INSTRUMENTS */
let performance = window().unwrap().performance().unwrap();
// get the display canvas
let canvas = display.get().unchecked_into::<web_sys::HtmlCanvasElement>();
let ctx = canvas
.get_context("webgl2")
.unwrap()
.unwrap()
.dyn_into::<WebGl2RenderingContext>()
.unwrap();
// disable depth testing
ctx.disable(WebGl2RenderingContext::DEPTH_TEST);
// set blend mode
ctx.enable(WebGl2RenderingContext::BLEND);
ctx.blend_func(WebGl2RenderingContext::SRC_ALPHA, WebGl2RenderingContext::ONE_MINUS_SRC_ALPHA);
// set up the sphere rendering program
let sphere_program = set_up_program(
&ctx,
include_str!("identity.vert"),
include_str!("spheres.frag")
);
// set up the point rendering program
let point_program = set_up_program(
&ctx,
include_str!("point.vert"),
include_str!("point.frag")
);
/* DEBUG */
// print the maximum number of vectors that can be passed as
// uniforms to a fragment shader. the OpenGL ES 3.0 standard
// requires this maximum to be at least 224, as discussed in the
// documentation of the GL_MAX_FRAGMENT_UNIFORM_VECTORS parameter
// here:
//
// https://registry.khronos.org/OpenGL-Refpages/es3.0/html/glGet.xhtml
//
// there are also other size limits. for example, on Aaron's
// machine, the the length of a float or genType array seems to be
// capped at 1024 elements
console::log_2(
&ctx.get_parameter(WebGl2RenderingContext::MAX_FRAGMENT_UNIFORM_VECTORS).unwrap(),
&JsValue::from("uniform vectors available")
);
// find the sphere program's vertex attribute
let viewport_position_attr = ctx.get_attrib_location(&sphere_program, "position") as u32;
// find the sphere program's uniforms
const SPHERE_MAX: usize = 200;
let sphere_cnt_loc = ctx.get_uniform_location(&sphere_program, "sphere_cnt");
let sphere_sp_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &sphere_program, "sphere_list", Some("sp")
);
let sphere_lt_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &sphere_program, "sphere_list", Some("lt")
);
let sphere_color_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &sphere_program, "color_list", None
);
let sphere_highlight_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &sphere_program, "highlight_list", None
);
let resolution_loc = ctx.get_uniform_location(&sphere_program, "resolution");
let shortdim_loc = ctx.get_uniform_location(&sphere_program, "shortdim");
let layer_threshold_loc = ctx.get_uniform_location(&sphere_program, "layer_threshold");
let debug_mode_loc = ctx.get_uniform_location(&sphere_program, "debug_mode");
// load the viewport vertex positions into a new vertex buffer object
const VERTEX_CNT: usize = 6;
let viewport_positions: [f32; 3*VERTEX_CNT] = [
// northwest triangle
-1.0, -1.0, 0.0,
-1.0, 1.0, 0.0,
1.0, 1.0, 0.0,
// southeast triangle
-1.0, -1.0, 0.0,
1.0, 1.0, 0.0,
1.0, -1.0, 0.0
];
let viewport_position_buffer = load_new_buffer(&ctx, &viewport_positions);
// find the point program's vertex attributes
let point_position_attr = ctx.get_attrib_location(&point_program, "position") as u32;
let point_color_attr = ctx.get_attrib_location(&point_program, "color") as u32;
let point_highlight_attr = ctx.get_attrib_location(&point_program, "highlight") as u32;
let point_selection_attr = ctx.get_attrib_location(&point_program, "selected") as u32;
// set up a repainting routine
let (_, start_animation_loop, _) = create_raf(move || {
// get the time step
let time = performance.now();
let time_step = 0.001*(time - last_time);
last_time = time;
// get the navigation state
let pitch_up_val = pitch_up.get();
let pitch_down_val = pitch_down.get();
let yaw_right_val = yaw_right.get();
let yaw_left_val = yaw_left.get();
let roll_ccw_val = roll_ccw.get();
let roll_cw_val = roll_cw.get();
let zoom_in_val = zoom_in.get();
let zoom_out_val = zoom_out.get();
let turntable_val = turntable.get(); /* BENCHMARKING */
// get the manipulation state
let translate_neg_x_val = translate_neg_x.get();
let translate_pos_x_val = translate_pos_x.get();
let translate_neg_y_val = translate_neg_y.get();
let translate_pos_y_val = translate_pos_y.get();
let translate_neg_z_val = translate_neg_z.get();
let translate_pos_z_val = translate_pos_z.get();
let shrink_neg_val = shrink_neg.get();
let shrink_pos_val = shrink_pos.get();
// update the assembly's orientation
let ang_vel = {
let pitch = pitch_up_val - pitch_down_val;
let yaw = yaw_right_val - yaw_left_val;
let roll = roll_ccw_val - roll_cw_val;
if pitch != 0.0 || yaw != 0.0 || roll != 0.0 {
ROT_SPEED * Vector3::new(-pitch, yaw, roll).normalize()
} else {
Vector3::zeros()
}
} /* BENCHMARKING */ + if turntable_val {
Vector3::new(0.0, TURNTABLE_SPEED, 0.0)
} else {
Vector3::zeros()
};
let mut rotation_sp = rotation.fixed_view_mut::<3, 3>(0, 0);
rotation_sp.copy_from(
Rotation3::from_scaled_axis(time_step * ang_vel).matrix()
);
orientation = &rotation * &orientation;
// update the assembly's location
let zoom = zoom_out_val - zoom_in_val;
location_z *= (time_step * ZOOM_SPEED * zoom).exp();
// manipulate the assembly
if state.selection.with(|sel| sel.len() == 1) {
let sel = state.selection.with(
|sel| sel.into_iter().next().unwrap().clone()
);
let translate_x = translate_pos_x_val - translate_neg_x_val;
let translate_y = translate_pos_y_val - translate_neg_y_val;
let translate_z = translate_pos_z_val - translate_neg_z_val;
let shrink = shrink_pos_val - shrink_neg_val;
let translating =
translate_x != 0.0
|| translate_y != 0.0
|| translate_z != 0.0;
if translating || shrink != 0.0 {
let elt_motion = {
let u = if translating {
TRANSLATION_SPEED * Vector3::new(
translate_x, translate_y, translate_z
).normalize()
} else {
Vector3::zeros()
};
time_step * DVector::from_column_slice(
&[u[0], u[1], u[2], SHRINKING_SPEED * shrink]
)
};
assembly_for_raf.deform(
vec![
ElementMotion {
element: sel,
velocity: elt_motion.as_view()
}
]
);
scene_changed.set(true);
}
}
if scene_changed.get() {
const SPACE_DIM: usize = 3;
const COLOR_SIZE: usize = 3;
/* INSTRUMENTS */
// measure mean frame interval
frames_since_last_sample += 1;
if frames_since_last_sample >= SAMPLE_PERIOD {
mean_frame_interval.set((time - last_sample_time) / (SAMPLE_PERIOD as f64));
last_sample_time = time;
frames_since_last_sample = 0;
}
// --- get the assembly ---
let mut scene = Scene::new();
// find the map from assembly space to world space
let location = {
let u = -location_z;
DMatrix::from_column_slice(5, 5, &[
1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, u,
0.0, 0.0, 2.0*u, 1.0, u*u,
0.0, 0.0, 0.0, 0.0, 1.0
])
};
let asm_to_world = &location * &orientation;
// set up the scene
state.assembly.elements.with_untracked(
|elts| for elt in elts {
let selected = state.selection.with(|sel| sel.contains(elt));
elt.show(&mut scene, selected);
}
);
let sphere_cnt = scene.spheres.len_i32();
// --- draw the spheres ---
// use the sphere rendering program
ctx.use_program(Some(&sphere_program));
// enable the sphere program's vertex attribute
ctx.enable_vertex_attrib_array(viewport_position_attr);
// write the spheres in world coordinates
let sphere_reps_world: Vec<_> = scene.spheres.representations.into_iter().map(
|rep| (&asm_to_world * rep).cast::<f32>()
).collect();
// set the resolution
let width = canvas.width() as f32;
let height = canvas.height() as f32;
ctx.uniform2f(resolution_loc.as_ref(), width, height);
ctx.uniform1f(shortdim_loc.as_ref(), width.min(height));
// pass the scene data
ctx.uniform1i(sphere_cnt_loc.as_ref(), sphere_cnt);
for n in 0..sphere_reps_world.len() {
let v = &sphere_reps_world[n];
ctx.uniform3fv_with_f32_array(
sphere_sp_locs[n].as_ref(),
v.rows(0, 3).as_slice()
);
ctx.uniform2fv_with_f32_array(
sphere_lt_locs[n].as_ref(),
v.rows(3, 2).as_slice()
);
ctx.uniform4fv_with_f32_array(
sphere_color_locs[n].as_ref(),
&scene.spheres.colors_with_opacity[n]
);
ctx.uniform1f(
sphere_highlight_locs[n].as_ref(),
scene.spheres.highlights[n]
);
}
// pass the display parameters
ctx.uniform1i(layer_threshold_loc.as_ref(), LAYER_THRESHOLD);
ctx.uniform1i(debug_mode_loc.as_ref(), DEBUG_MODE);
// bind the viewport vertex position buffer to the position
// attribute in the vertex shader
bind_to_attribute(&ctx, viewport_position_attr, SPACE_DIM as i32, &viewport_position_buffer);
// draw the scene
ctx.draw_arrays(WebGl2RenderingContext::TRIANGLES, 0, VERTEX_CNT as i32);
// disable the sphere program's vertex attribute
ctx.disable_vertex_attrib_array(viewport_position_attr);
// --- draw the points ---
if !scene.points.representations.is_empty() {
// use the point rendering program
ctx.use_program(Some(&point_program));
// enable the point program's vertex attributes
ctx.enable_vertex_attrib_array(point_position_attr);
ctx.enable_vertex_attrib_array(point_color_attr);
ctx.enable_vertex_attrib_array(point_highlight_attr);
ctx.enable_vertex_attrib_array(point_selection_attr);
// write the points in world coordinates
let asm_to_world_sp = asm_to_world.rows(0, SPACE_DIM);
let point_positions = DMatrix::from_columns(
&scene.points.representations.into_iter().map(
|rep| &asm_to_world_sp * rep
).collect::<Vec<_>>().as_slice()
).cast::<f32>();
// load the point positions and colors into new buffers and
// bind them to the corresponding attributes in the vertex
// shader
bind_new_buffer_to_attribute(&ctx, point_position_attr, SPACE_DIM as i32, point_positions.as_slice());
bind_new_buffer_to_attribute(&ctx, point_color_attr, (COLOR_SIZE + 1) as i32, scene.points.colors_with_opacity.concat().as_slice());
bind_new_buffer_to_attribute(&ctx, point_highlight_attr, 1 as i32, scene.points.highlights.as_slice());
bind_new_buffer_to_attribute(&ctx, point_selection_attr, 1 as i32, scene.points.selections.as_slice());
// draw the scene
ctx.draw_arrays(WebGl2RenderingContext::POINTS, 0, point_positions.ncols() as i32);
// disable the point program's vertex attributes
ctx.disable_vertex_attrib_array(point_position_attr);
ctx.disable_vertex_attrib_array(point_color_attr);
ctx.disable_vertex_attrib_array(point_highlight_attr);
ctx.disable_vertex_attrib_array(point_selection_attr);
}
// --- update the display state ---
// update the viewpoint
assembly_to_world.set(asm_to_world);
// clear the scene change flag
scene_changed.set(
pitch_up_val != 0.0
|| pitch_down_val != 0.0
|| yaw_left_val != 0.0
|| yaw_right_val != 0.0
|| roll_cw_val != 0.0
|| roll_ccw_val != 0.0
|| zoom_in_val != 0.0
|| zoom_out_val != 0.0
|| turntable_val /* BENCHMARKING */
);
} else {
frames_since_last_sample = 0;
mean_frame_interval.set(-1.0);
}
});
start_animation_loop();
});
let set_nav_signal = move |event: &KeyboardEvent, value: f64| {
let mut navigating = true;
let shift = event.shift_key();
match event.key().as_str() {
"ArrowUp" if shift => zoom_in.set(value),
"ArrowDown" if shift => zoom_out.set(value),
"ArrowUp" => pitch_up.set(value),
"ArrowDown" => pitch_down.set(value),
"ArrowRight" if shift => roll_cw.set(value),
"ArrowLeft" if shift => roll_ccw.set(value),
"ArrowRight" => yaw_right.set(value),
"ArrowLeft" => yaw_left.set(value),
_ => navigating = false
};
if navigating {
scene_changed.set(true);
event.prevent_default();
}
};
let set_manip_signal = move |event: &KeyboardEvent, value: f64| {
let mut manipulating = true;
let shift = event.shift_key();
match event.key().as_str() {
"d" | "D" => translate_pos_x.set(value),
"a" | "A" => translate_neg_x.set(value),
"w" | "W" if shift => translate_neg_z.set(value),
"s" | "S" if shift => translate_pos_z.set(value),
"w" | "W" => translate_pos_y.set(value),
"s" | "S" => translate_neg_y.set(value),
"]" | "}" => shrink_neg.set(value),
"[" | "{" => shrink_pos.set(value),
_ => manipulating = false
};
if manipulating {
event.prevent_default();
}
};
view! {
/* TO DO */
// switch back to integer-valued parameters when that becomes possible
// again
canvas(
ref=display,
id="display",
width="600",
height="600",
tabindex="0",
on:keydown=move |event: KeyboardEvent| {
if event.key() == "Shift" {
// swap navigation inputs
roll_cw.set(yaw_right.get());
roll_ccw.set(yaw_left.get());
zoom_in.set(pitch_up.get());
zoom_out.set(pitch_down.get());
yaw_right.set(0.0);
yaw_left.set(0.0);
pitch_up.set(0.0);
pitch_down.set(0.0);
// swap manipulation inputs
translate_pos_z.set(translate_neg_y.get());
translate_neg_z.set(translate_pos_y.get());
translate_pos_y.set(0.0);
translate_neg_y.set(0.0);
} else {
if event.key() == "Enter" { /* BENCHMARKING */
turntable.set_fn(|turn| !turn);
scene_changed.set(true);
}
set_nav_signal(&event, 1.0);
set_manip_signal(&event, 1.0);
}
},
on:keyup=move |event: KeyboardEvent| {
if event.key() == "Shift" {
// swap navigation inputs
yaw_right.set(roll_cw.get());
yaw_left.set(roll_ccw.get());
pitch_up.set(zoom_in.get());
pitch_down.set(zoom_out.get());
roll_cw.set(0.0);
roll_ccw.set(0.0);
zoom_in.set(0.0);
zoom_out.set(0.0);
// swap manipulation inputs
translate_pos_y.set(translate_neg_z.get());
translate_neg_y.set(translate_pos_z.get());
translate_pos_z.set(0.0);
translate_neg_z.set(0.0);
} else {
set_nav_signal(&event, 0.0);
set_manip_signal(&event, 0.0);
}
},
on:blur=move |_| {
pitch_up.set(0.0);
pitch_down.set(0.0);
yaw_right.set(0.0);
yaw_left.set(0.0);
roll_ccw.set(0.0);
roll_cw.set(0.0);
},
on:click=move |event: MouseEvent| {
// find the nearest element along the pointer direction
let (dir, pixel_size) = event_dir(&event);
console::log_1(&JsValue::from(dir.to_string()));
let mut clicked: Option<(Rc<dyn Element>, f64)> = None;
let tangible_elts = state.assembly.elements
.get_clone_untracked()
.into_iter()
.filter(|elt| !elt.ghost().get());
for elt in tangible_elts {
match assembly_to_world.with(|asm_to_world| elt.cast(dir, asm_to_world, pixel_size)) {
Some(depth) => match clicked {
Some((_, best_depth)) => {
if depth < best_depth {
clicked = Some((elt, depth))
}
},
None => clicked = Some((elt, depth))
}
None => ()
};
}
// if we clicked something, select it
match clicked {
Some((elt, _)) => state.select(&elt, event.shift_key()),
None => state.selection.update(|sel| sel.clear())
};
}
)
}
}

View file

@ -1,7 +0,0 @@
#version 300 es
in vec4 position;
void main() {
gl_Position = position;
}

View file

@ -1,264 +0,0 @@
use itertools::Itertools;
use std::rc::Rc;
use sycamore::prelude::*;
use web_sys::{
KeyboardEvent,
MouseEvent,
wasm_bindgen::JsCast
};
use crate::{
AppState,
assembly::{
Element,
HalfCurvatureRegulator,
InversiveDistanceRegulator,
Regulator
},
specified::SpecifiedValue
};
// an editable view of a regulator
#[component(inline_props)]
fn RegulatorInput(regulator: Rc<dyn Regulator>) -> View {
// get the regulator's measurement and set point signals
let measurement = regulator.measurement();
let set_point = regulator.set_point();
// the `valid` signal tracks whether the last entered value is a valid set
// point specification
let valid = create_signal(true);
// the `value` signal holds the current set point specification
let value = create_signal(
set_point.with_untracked(|set_pt| set_pt.spec.clone())
);
// this `reset_value` closure resets the input value to the regulator's set
// point specification
let reset_value = move || {
batch(|| {
valid.set(true);
value.set(set_point.with(|set_pt| set_pt.spec.clone()));
})
};
// reset the input value whenever the regulator's set point specification
// is updated
create_effect(reset_value);
view! {
input(
r#type="text",
class=move || {
if valid.get() {
set_point.with(|set_pt| {
if set_pt.is_present() {
"regulator-input constraint"
} else {
"regulator-input"
}
})
} else {
"regulator-input invalid"
}
},
placeholder=measurement.with(|result| result.to_string()),
bind:value=value,
on:change=move |_| {
valid.set(
match SpecifiedValue::try_from(value.get_clone_untracked()) {
Ok(set_pt) => {
set_point.set(set_pt);
true
}
Err(_) => false
}
)
},
on:keydown={
move |event: KeyboardEvent| {
match event.key().as_str() {
"Escape" => reset_value(),
_ => ()
}
}
}
)
}
}
pub trait OutlineItem {
fn outline_item(self: Rc<Self>, element: &Rc<dyn Element>) -> View;
}
impl OutlineItem for InversiveDistanceRegulator {
fn outline_item(self: Rc<Self>, element: &Rc<dyn Element>) -> View {
let other_subject_label = if self.subjects[0] == element.clone() {
self.subjects[1].label()
} else {
self.subjects[0].label()
}.clone();
view! {
li(class="regulator") {
div(class="regulator-label") { (other_subject_label) }
div(class="regulator-type") { "Inversive distance" }
RegulatorInput(regulator=self)
div(class="status")
}
}
}
}
impl OutlineItem for HalfCurvatureRegulator {
fn outline_item(self: Rc<Self>, _element: &Rc<dyn Element>) -> View {
view! {
li(class="regulator") {
div(class="regulator-label") // for spacing
div(class="regulator-type") { "Half-curvature" }
RegulatorInput(regulator=self)
div(class="status")
}
}
}
}
// a list item that shows an element in an outline view of an assembly
#[component(inline_props)]
fn ElementOutlineItem(element: Rc<dyn Element>) -> View {
let state = use_context::<AppState>();
let class = {
let element_for_class = element.clone();
state.selection.map(
move |sel| if sel.contains(&element_for_class) { "selected" } else { "" }
)
};
let label = element.label().clone();
let representation = element.representation().clone();
let rep_components = move || {
representation.with(
|rep| rep.iter().map(
|u| {
let u_str = format!("{:.3}", u).replace("-", "\u{2212}");
view! { div { (u_str) } }
}
).collect::<Vec<_>>()
)
};
let regulated = element.regulators().map(|regs| regs.len() > 0);
let regulator_list = element.regulators().map(
|regs| regs
.clone()
.into_iter()
.sorted_by_key(|reg| reg.subjects().len())
.collect::<Vec<_>>()
);
let details_node = create_node_ref();
view! {
li {
details(ref=details_node) {
summary(
class=class.get(),
on:keydown={
let element_for_handler = element.clone();
move |event: KeyboardEvent| {
match event.key().as_str() {
"Enter" => {
state.select(&element_for_handler, event.shift_key());
event.prevent_default();
},
"ArrowRight" if regulated.get() => {
let _ = details_node
.get()
.unchecked_into::<web_sys::Element>()
.set_attribute("open", "");
},
"ArrowLeft" => {
let _ = details_node
.get()
.unchecked_into::<web_sys::Element>()
.remove_attribute("open");
},
_ => ()
}
}
}
) {
div(
class="element-switch",
on:click=|event: MouseEvent| event.stop_propagation()
)
div(
class="element",
on:click={
let state_for_handler = state.clone();
let element_for_handler = element.clone();
move |event: MouseEvent| {
state_for_handler.select(&element_for_handler, event.shift_key());
event.stop_propagation();
event.prevent_default();
}
}
) {
div(class="element-label") { (label) }
div(class="element-representation") { (rep_components) }
input(
r#type="checkbox",
bind:checked=element.ghost(),
on:click=|event: MouseEvent| event.stop_propagation()
)
}
}
ul(class="regulators") {
Keyed(
list=regulator_list,
view=move |reg| reg.outline_item(&element),
key=|reg| reg.serial()
)
}
}
}
}
}
// a component that lists the elements of the current assembly, showing each
// element's regulators in a collapsible sub-list. its implementation is based
// on Kate Morley's HTML + CSS tree views:
//
// https://iamkate.com/code/tree-views/
//
#[component]
pub fn Outline() -> View {
let state = use_context::<AppState>();
// list the elements alphabetically by ID
/* TO DO */
// this code is designed to generalize easily to other sort keys. if we only
// ever wanted to sort by ID, we could do that more simply using the
// `elements_by_id` index
let element_list = state.assembly.elements.map(
|elts| elts
.clone()
.into_iter()
.sorted_by_key(|elt| elt.id().clone())
.collect::<Vec<_>>()
);
view! {
ul(
id="outline",
on:click={
let state = use_context::<AppState>();
move |_| state.selection.update(|sel| sel.clear())
}
) {
Keyed(
list=element_list,
view=|elt| view! {
ElementOutlineItem(element=elt)
},
key=|elt| elt.serial()
)
}
}
}

View file

@ -1,19 +0,0 @@
#version 300 es
precision highp float;
in vec4 point_color;
in float point_highlight;
in float total_radius;
out vec4 outColor;
void main() {
float r = total_radius * length(2.*gl_PointCoord - vec2(1.));
const float POINT_RADIUS = 4.;
float border = smoothstep(POINT_RADIUS - 1., POINT_RADIUS, r);
float disk = 1. - smoothstep(total_radius - 1., total_radius, r);
vec4 color = mix(point_color, vec4(1.), border * point_highlight);
outColor = vec4(vec3(1.), disk) * color;
}

View file

@ -1,24 +0,0 @@
#version 300 es
in vec4 position;
in vec4 color;
in float highlight;
in float selected;
out vec4 point_color;
out float point_highlight;
out float total_radius;
// camera
const float focal_slope = 0.3;
void main() {
total_radius = 5. + 0.5*selected;
float depth = -focal_slope * position.z;
gl_Position = vec4(position.xy / depth, 0., 1.);
gl_PointSize = 2.*total_radius;
point_color = color;
point_highlight = highlight;
}

View file

@ -1,235 +0,0 @@
#version 300 es
precision highp float;
out vec4 outColor;
// --- inversive geometry ---
struct vecInv {
vec3 sp;
vec2 lt;
};
// --- uniforms ---
// assembly
const int SPHERE_MAX = 200;
uniform int sphere_cnt;
uniform vecInv sphere_list[SPHERE_MAX];
uniform vec4 color_list[SPHERE_MAX];
uniform float highlight_list[SPHERE_MAX];
// view
uniform vec2 resolution;
uniform float shortdim;
// controls
uniform int layer_threshold;
uniform bool debug_mode;
// light and camera
const float focal_slope = 0.3;
const vec3 light_dir = normalize(vec3(2., 2., 1.));
const float ixn_threshold = 0.005;
const float INTERIOR_DIMMING = 0.7;
// --- sRGB ---
// map colors from RGB space to sRGB space, as specified in the sRGB standard
// (IEC 61966-2-1:1999)
//
// https://www.color.org/sRGB.pdf
// https://www.color.org/chardata/rgb/srgb.xalter
//
// in RGB space, color value is proportional to light intensity, so linear
// color-vector interpolation corresponds to physical light mixing. in sRGB
// space, the color encoding used by many monitors, we use more of the value
// interval to represent low intensities, and less of the interval to represent
// high intensities. this improves color quantization
float sRGB(float t) {
if (t <= 0.0031308) {
return 12.92*t;
} else {
return 1.055*pow(t, 5./12.) - 0.055;
}
}
vec3 sRGB(vec3 color) {
return vec3(sRGB(color.r), sRGB(color.g), sRGB(color.b));
}
// --- shading ---
struct Fragment {
vec3 pt;
vec3 normal;
vec4 color;
};
Fragment sphere_shading(vecInv v, vec3 pt, vec4 base_color) {
// the expression for normal needs to be checked. it's supposed to give the
// negative gradient of the lorentz product between the impact point vector
// and the sphere vector with respect to the coordinates of the impact
// point. i calculated it in my head and decided that the result looked good
// enough for now
vec3 normal = normalize(-v.sp + 2.*v.lt.s*pt);
float incidence = dot(normal, light_dir);
float illum = mix(0.4, 1.0, max(incidence, 0.0));
return Fragment(pt, normal, vec4(illum * base_color.rgb, base_color.a));
}
float intersection_dist(Fragment a, Fragment b) {
float intersection_sin = length(cross(a.normal, b.normal));
vec3 disp = a.pt - b.pt;
return max(
abs(dot(a.normal, disp)),
abs(dot(b.normal, disp))
) / intersection_sin;
}
// --- ray-casting ---
struct TaggedDepth {
float depth;
float dimming;
int id;
};
// if `a/b` is less than this threshold, we approximate `a*u^2 + b*u + c` by
// the linear function `b*u + c`
const float DEG_THRESHOLD = 1e-9;
// the depths, represented as multiples of `dir`, where the line generated by
// `dir` hits the sphere represented by `v`. if both depths are positive, the
// smaller one is returned in the first component. if only one depth is
// positive, it could be returned in either component
vec2 sphere_cast(vecInv v, vec3 dir) {
float a = -v.lt.s * dot(dir, dir);
float b = dot(v.sp, dir);
float c = -v.lt.t;
float adjust = 4.*a*c/(b*b);
if (adjust < 1.) {
// as long as `b` is non-zero, the linear approximation of
//
// a*u^2 + b*u + c
//
// at `u = 0` will reach zero at a finite depth `u_lin`. the root of the
// quadratic adjacent to `u_lin` is stored in `lin_root`. if both roots
// have the same sign, `lin_root` will be the one closer to `u = 0`
float square_rect_ratio = 1. + sqrt(1. - adjust);
float lin_root = -(2.*c)/b / square_rect_ratio;
if (abs(a) > DEG_THRESHOLD * abs(b)) {
return vec2(lin_root, -b/(2.*a) * square_rect_ratio);
} else {
return vec2(lin_root, -1.);
}
} else {
// the line through `dir` misses the sphere completely
return vec2(-1., -1.);
}
}
void main() {
vec2 scr = (2.*gl_FragCoord.xy - resolution) / shortdim;
vec3 dir = vec3(focal_slope * scr, -1.);
// cast rays through the spheres
const int LAYER_MAX = 12;
TaggedDepth top_hits [LAYER_MAX];
int layer_cnt = 0;
for (int id = 0; id < sphere_cnt; ++id) {
// find out where the ray hits the sphere
vec2 hit_depths = sphere_cast(sphere_list[id], dir);
// insertion-sort the points we hit into the hit list
float dimming = 1.;
for (int side = 0; side < 2; ++side) {
float depth = hit_depths[side];
if (depth > 0.) {
for (int layer = layer_cnt; layer >= 0; --layer) {
if (layer < 1 || top_hits[layer-1].depth <= depth) {
// we're not as close to the screen as the hit before
// the empty slot, so insert here
if (layer < LAYER_MAX) {
top_hits[layer] = TaggedDepth(depth, dimming, id);
}
break;
} else {
// we're closer to the screen than the hit before the
// empty slot, so move that hit into the empty slot
top_hits[layer] = top_hits[layer-1];
}
}
layer_cnt = min(layer_cnt + 1, LAYER_MAX);
dimming = INTERIOR_DIMMING;
}
}
}
/* DEBUG */
// in debug mode, show the layer count instead of the shaded image
if (debug_mode) {
// at the bottom of the screen, show the color scale instead of the
// layer count
if (gl_FragCoord.y < 10.) layer_cnt = int(16. * gl_FragCoord.x / resolution.x);
// convert number to color
ivec3 bits = layer_cnt / ivec3(1, 2, 4);
vec3 color = mod(vec3(bits), 2.);
if (layer_cnt % 16 >= 8) {
color = mix(color, vec3(0.5), 0.5);
}
outColor = vec4(color, 1.);
return;
}
// composite the sphere fragments
vec3 color = vec3(0.);
int layer = layer_cnt - 1;
TaggedDepth hit = top_hits[layer];
vec4 sphere_color = color_list[hit.id];
Fragment frag_next = sphere_shading(
sphere_list[hit.id],
hit.depth * dir,
vec4(hit.dimming * sphere_color.rgb, sphere_color.a)
);
float highlight_next = highlight_list[hit.id];
--layer;
for (; layer >= layer_threshold; --layer) {
// load the current fragment
Fragment frag = frag_next;
float highlight = highlight_next;
// shade the next fragment
hit = top_hits[layer];
sphere_color = color_list[hit.id];
frag_next = sphere_shading(
sphere_list[hit.id],
hit.depth * dir,
vec4(hit.dimming * sphere_color.rgb, sphere_color.a)
);
highlight_next = highlight_list[hit.id];
// highlight intersections
float ixn_dist = intersection_dist(frag, frag_next);
float max_highlight = max(highlight, highlight_next);
float ixn_highlight = 0.5 * max_highlight * (1. - smoothstep(2./3.*ixn_threshold, 1.5*ixn_threshold, ixn_dist));
frag.color = mix(frag.color, vec4(1.), ixn_highlight);
frag_next.color = mix(frag_next.color, vec4(1.), ixn_highlight);
// highlight cusps
float cusp_cos = abs(dot(dir, frag.normal));
float cusp_threshold = 2.*sqrt(ixn_threshold * sphere_list[hit.id].lt.s);
float cusp_highlight = highlight * (1. - smoothstep(2./3.*cusp_threshold, 1.5*cusp_threshold, cusp_cos));
frag.color = mix(frag.color, vec4(1.), cusp_highlight);
// composite the current fragment
color = mix(color, frag.color.rgb, frag.color.a);
}
color = mix(color, frag_next.color.rgb, frag_next.color.a);
outColor = vec4(sRGB(color), 1.);
}

View file

@ -1,947 +0,0 @@
use itertools::izip;
use std::{f64::consts::{FRAC_1_SQRT_2, PI}, rc::Rc};
use nalgebra::Vector3;
use sycamore::prelude::*;
use web_sys::{console, wasm_bindgen::JsValue};
use crate::{
AppState,
engine,
engine::DescentHistory,
assembly::{
Assembly,
Element,
ElementColor,
InversiveDistanceRegulator,
Point,
Sphere
},
specified::SpecifiedValue
};
// --- loaders ---
/* DEBUG */
// each of these functions loads an example assembly for testing. once we've
// done more work on saving and loading assemblies, we should come back to this
// code to see if it can be simplified
fn load_gen_assemb(assembly: &Assembly) {
let _ = assembly.try_insert_element(
Sphere::new(
String::from("gemini_a"),
String::from("Castor"),
[1.00_f32, 0.25_f32, 0.00_f32],
engine::sphere(0.5, 0.5, 0.0, 1.0)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
String::from("gemini_b"),
String::from("Pollux"),
[0.00_f32, 0.25_f32, 1.00_f32],
engine::sphere(-0.5, -0.5, 0.0, 1.0)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
String::from("ursa_major"),
String::from("Ursa major"),
[0.25_f32, 0.00_f32, 1.00_f32],
engine::sphere(-0.5, 0.5, 0.0, 0.75)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
String::from("ursa_minor"),
String::from("Ursa minor"),
[0.25_f32, 1.00_f32, 0.00_f32],
engine::sphere(0.5, -0.5, 0.0, 0.5)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
String::from("moon_deimos"),
String::from("Deimos"),
[0.75_f32, 0.75_f32, 0.00_f32],
engine::sphere(0.0, 0.15, 1.0, 0.25)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
String::from("moon_phobos"),
String::from("Phobos"),
[0.00_f32, 0.75_f32, 0.50_f32],
engine::sphere(0.0, -0.15, -1.0, 0.25)
)
);
}
fn load_low_curv_assemb(assembly: &Assembly) {
// create the spheres
let a = 0.75_f64.sqrt();
let _ = assembly.try_insert_element(
Sphere::new(
"central".to_string(),
"Central".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(0.0, 0.0, 0.0, 1.0)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
"assemb_plane".to_string(),
"Assembly plane".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere_with_offset(0.0, 0.0, 1.0, 0.0, 0.0)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
"side1".to_string(),
"Side 1".to_string(),
[1.00_f32, 0.00_f32, 0.25_f32],
engine::sphere_with_offset(1.0, 0.0, 0.0, 1.0, 0.0)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
"side2".to_string(),
"Side 2".to_string(),
[0.25_f32, 1.00_f32, 0.00_f32],
engine::sphere_with_offset(-0.5, a, 0.0, 1.0, 0.0)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
"side3".to_string(),
"Side 3".to_string(),
[0.00_f32, 0.25_f32, 1.00_f32],
engine::sphere_with_offset(-0.5, -a, 0.0, 1.0, 0.0)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
"corner1".to_string(),
"Corner 1".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(-4.0/3.0, 0.0, 0.0, 1.0/3.0)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
"corner2".to_string(),
"Corner 2".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(2.0/3.0, -4.0/3.0 * a, 0.0, 1.0/3.0)
)
);
let _ = assembly.try_insert_element(
Sphere::new(
String::from("corner3"),
String::from("Corner 3"),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(2.0/3.0, 4.0/3.0 * a, 0.0, 1.0/3.0)
)
);
// impose the desired tangencies and make the sides planar
let index_range = 1..=3;
let [central, assemb_plane] = ["central", "assemb_plane"].map(
|id| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[id].clone()
)
);
let sides = index_range.clone().map(
|k| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&format!("side{k}")].clone()
)
);
let corners = index_range.map(
|k| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&format!("corner{k}")].clone()
)
);
for plane in [assemb_plane.clone()].into_iter().chain(sides.clone()) {
// fix the curvature of each plane
let curvature = plane.regulators().with_untracked(
|regs| regs.first().unwrap().clone()
);
curvature.set_point().set(SpecifiedValue::try_from("0".to_string()).unwrap());
}
let all_perpendicular = [central.clone()].into_iter()
.chain(sides.clone())
.chain(corners.clone());
for sphere in all_perpendicular {
// make each side and packed sphere perpendicular to the assembly plane
let right_angle = InversiveDistanceRegulator::new([sphere, assemb_plane.clone()]);
right_angle.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
assembly.insert_regulator(Rc::new(right_angle));
}
for sphere in sides.clone().chain(corners.clone()) {
// make each side and corner sphere tangent to the central sphere
let tangency = InversiveDistanceRegulator::new([sphere.clone(), central.clone()]);
tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap());
assembly.insert_regulator(Rc::new(tangency));
}
for (side_index, side) in sides.enumerate() {
// make each side tangent to the two adjacent corner spheres
for (corner_index, corner) in corners.clone().enumerate() {
if side_index != corner_index {
let tangency = InversiveDistanceRegulator::new([side.clone(), corner]);
tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap());
assembly.insert_regulator(Rc::new(tangency));
}
}
}
}
fn load_pointed_assemb(assembly: &Assembly) {
let _ = assembly.try_insert_element(
Point::new(
format!("point_front"),
format!("Front point"),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::point(0.0, 0.0, FRAC_1_SQRT_2)
)
);
let _ = assembly.try_insert_element(
Point::new(
format!("point_back"),
format!("Back point"),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::point(0.0, 0.0, -FRAC_1_SQRT_2)
)
);
for index_x in 0..=1 {
for index_y in 0..=1 {
let x = index_x as f64 - 0.5;
let y = index_y as f64 - 0.5;
let _ = assembly.try_insert_element(
Sphere::new(
format!("sphere{index_x}{index_y}"),
format!("Sphere {index_x}{index_y}"),
[0.5*(1.0 + x) as f32, 0.5*(1.0 + y) as f32, 0.5*(1.0 - x*y) as f32],
engine::sphere(x, y, 0.0, 1.0)
)
);
let _ = assembly.try_insert_element(
Point::new(
format!("point{index_x}{index_y}"),
format!("Point {index_x}{index_y}"),
[0.5*(1.0 + x) as f32, 0.5*(1.0 + y) as f32, 0.5*(1.0 - x*y) as f32],
engine::point(x, y, 0.0)
)
);
}
}
}
// to finish describing the tridiminished icosahedron, set the inversive
// distance regulators as follows:
// A-A -0.25
// A-B "
// B-C "
// C-C "
// A-C -0.25 * φ^2 = -0.6545084971874737
fn load_tridim_icosahedron_assemb(assembly: &Assembly) {
// create the vertices
const COLOR_A: ElementColor = [1.00_f32, 0.25_f32, 0.25_f32];
const COLOR_B: ElementColor = [0.75_f32, 0.75_f32, 0.75_f32];
const COLOR_C: ElementColor = [0.25_f32, 0.50_f32, 1.00_f32];
let vertices = [
Point::new(
"a1".to_string(),
"A₁".to_string(),
COLOR_A,
engine::point(0.25, 0.75, 0.75)
),
Point::new(
"a2".to_string(),
"A₂".to_string(),
COLOR_A,
engine::point(0.75, 0.25, 0.75)
),
Point::new(
"a3".to_string(),
"A₃".to_string(),
COLOR_A,
engine::point(0.75, 0.75, 0.25)
),
Point::new(
"b1".to_string(),
"B₁".to_string(),
COLOR_B,
engine::point(0.75, -0.25, -0.25)
),
Point::new(
"b2".to_string(),
"B₂".to_string(),
COLOR_B,
engine::point(-0.25, 0.75, -0.25)
),
Point::new(
"b3".to_string(),
"B₃".to_string(),
COLOR_B,
engine::point(-0.25, -0.25, 0.75)
),
Point::new(
"c1".to_string(),
"C₁".to_string(),
COLOR_C,
engine::point(0.0, -1.0, -1.0)
),
Point::new(
"c2".to_string(),
"C₂".to_string(),
COLOR_C,
engine::point(-1.0, 0.0, -1.0)
),
Point::new(
"c3".to_string(),
"C₃".to_string(),
COLOR_C,
engine::point(-1.0, -1.0, 0.0)
)
];
for vertex in vertices {
let _ = assembly.try_insert_element(vertex);
}
// create the faces
const COLOR_FACE: ElementColor = [0.75_f32, 0.75_f32, 0.75_f32];
let frac_1_sqrt_6 = 1.0 / 6.0_f64.sqrt();
let frac_2_sqrt_6 = 2.0 * frac_1_sqrt_6;
let faces = [
Sphere::new(
"face1".to_string(),
"Face 1".to_string(),
COLOR_FACE,
engine::sphere_with_offset(frac_2_sqrt_6, -frac_1_sqrt_6, -frac_1_sqrt_6, -frac_1_sqrt_6, 0.0)
),
Sphere::new(
"face2".to_string(),
"Face 2".to_string(),
COLOR_FACE,
engine::sphere_with_offset(-frac_1_sqrt_6, frac_2_sqrt_6, -frac_1_sqrt_6, -frac_1_sqrt_6, 0.0)
),
Sphere::new(
"face3".to_string(),
"Face 3".to_string(),
COLOR_FACE,
engine::sphere_with_offset(-frac_1_sqrt_6, -frac_1_sqrt_6, frac_2_sqrt_6, -frac_1_sqrt_6, 0.0)
)
];
for face in faces {
face.ghost().set(true);
let _ = assembly.try_insert_element(face);
}
let index_range = 1..=3;
for j in index_range.clone() {
// make each face planar
let face = assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&format!("face{j}")].clone()
);
let curvature_regulator = face.regulators().with_untracked(
|regs| regs.first().unwrap().clone()
);
curvature_regulator.set_point().set(
SpecifiedValue::try_from("0".to_string()).unwrap()
);
// put each A vertex on the face it belongs to
let vertex_a = assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&format!("a{j}")].clone()
);
let incidence_a = InversiveDistanceRegulator::new([face.clone(), vertex_a.clone()]);
incidence_a.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
assembly.insert_regulator(Rc::new(incidence_a));
// regulate the B-C vertex distances
let vertices_bc = ["b", "c"].map(
|series| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&format!("{series}{j}")].clone()
)
);
assembly.insert_regulator(
Rc::new(InversiveDistanceRegulator::new(vertices_bc))
);
// get the pair of indices adjacent to `j`
let adjacent_indices = [j % 3 + 1, (j + 1) % 3 + 1];
for k in adjacent_indices.clone() {
for series in ["b", "c"] {
// put each B and C vertex on the faces it belongs to
let vertex = assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&format!("{series}{k}")].clone()
);
let incidence = InversiveDistanceRegulator::new([face.clone(), vertex.clone()]);
incidence.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
assembly.insert_regulator(Rc::new(incidence));
// regulate the A-B and A-C vertex distances
assembly.insert_regulator(
Rc::new(InversiveDistanceRegulator::new([vertex_a.clone(), vertex]))
);
}
}
// regulate the A-A and C-C vertex distances
let adjacent_pairs = ["a", "c"].map(
|series| adjacent_indices.map(
|index| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&format!("{series}{index}")].clone()
)
)
);
for pair in adjacent_pairs {
assembly.insert_regulator(
Rc::new(InversiveDistanceRegulator::new(pair))
);
}
}
}
// to finish describing the dodecahedral circle packing, set the inversive
// distance regulators to -1. some of the regulators have already been set
fn load_dodeca_packing_assemb(assembly: &Assembly) {
// add the substrate
let _ = assembly.try_insert_element(
Sphere::new(
"substrate".to_string(),
"Substrate".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(0.0, 0.0, 0.0, 1.0)
)
);
let substrate = assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id["substrate"].clone()
);
// fix the substrate's curvature
substrate.regulators().with_untracked(
|regs| regs.first().unwrap().clone()
).set_point().set(
SpecifiedValue::try_from("0.5".to_string()).unwrap()
);
// add the circles to be packed
const COLOR_A: ElementColor = [1.00_f32, 0.25_f32, 0.00_f32];
const COLOR_B: ElementColor = [1.00_f32, 0.00_f32, 0.25_f32];
const COLOR_C: ElementColor = [0.25_f32, 0.00_f32, 1.00_f32];
let phi = 0.5 + 1.25_f64.sqrt(); /* TO DO */ // replace with std::f64::consts::PHI when that gets stabilized
let phi_inv = 1.0 / phi;
let coord_scale = (phi + 2.0).sqrt();
let face_scales = [phi_inv, (13.0 / 12.0) / coord_scale];
let face_radii = [phi_inv, 5.0 / 12.0];
let mut faces = Vec::<Rc<dyn Element>>::new();
let subscripts = ["", ""];
for j in 0..2 {
for k in 0..2 {
let small_coord = face_scales[k] * (2.0*(j as f64) - 1.0);
let big_coord = face_scales[k] * (2.0*(k as f64) - 1.0) * phi;
let id_num = format!("{j}{k}");
let label_sub = format!("{}{}", subscripts[j], subscripts[k]);
// add the A face
let id_a = format!("a{id_num}");
let _ = assembly.try_insert_element(
Sphere::new(
id_a.clone(),
format!("A{label_sub}"),
COLOR_A,
engine::sphere(0.0, small_coord, big_coord, face_radii[k])
)
);
faces.push(
assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&id_a].clone()
)
);
// add the B face
let id_b = format!("b{id_num}");
let _ = assembly.try_insert_element(
Sphere::new(
id_b.clone(),
format!("B{label_sub}"),
COLOR_B,
engine::sphere(small_coord, big_coord, 0.0, face_radii[k])
)
);
faces.push(
assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&id_b].clone()
)
);
// add the C face
let id_c = format!("c{id_num}");
let _ = assembly.try_insert_element(
Sphere::new(
id_c.clone(),
format!("C{label_sub}"),
COLOR_C,
engine::sphere(big_coord, 0.0, small_coord, face_radii[k])
)
);
faces.push(
assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&id_c].clone()
)
);
}
}
// make each face sphere perpendicular to the substrate
for face in faces {
let right_angle = InversiveDistanceRegulator::new([face, substrate.clone()]);
right_angle.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
assembly.insert_regulator(Rc::new(right_angle));
}
// set up the tangencies that define the packing
for [long_edge_plane, short_edge_plane] in [["a", "b"], ["b", "c"], ["c", "a"]] {
for k in 0..2 {
let long_edge_ids = [
format!("{long_edge_plane}{k}0"),
format!("{long_edge_plane}{k}1")
];
let short_edge_ids = [
format!("{short_edge_plane}0{k}"),
format!("{short_edge_plane}1{k}")
];
let [long_edge, short_edge] = [long_edge_ids, short_edge_ids].map(
|edge_ids| edge_ids.map(
|id| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&id].clone()
)
)
);
// set up the short-edge tangency
let short_tangency = InversiveDistanceRegulator::new(short_edge.clone());
if k == 0 {
short_tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap());
}
assembly.insert_regulator(Rc::new(short_tangency));
// set up the side tangencies
for i in 0..2 {
for j in 0..2 {
let side_tangency = InversiveDistanceRegulator::new(
[long_edge[i].clone(), short_edge[j].clone()]
);
if i == 0 && k == 0 {
side_tangency.set_point.set(SpecifiedValue::try_from("-1".to_string()).unwrap());
}
assembly.insert_regulator(Rc::new(side_tangency));
}
}
}
}
}
// the initial configuration of this test assembly deliberately violates the
// constraints, so loading the assembly will trigger a non-trivial realization
fn load_balanced_assemb(assembly: &Assembly) {
// create the spheres
const R_OUTER: f64 = 10.0;
const R_INNER: f64 = 4.0;
let spheres = [
Sphere::new(
"outer".to_string(),
"Outer".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(0.0, 0.0, 0.0, R_OUTER)
),
Sphere::new(
"a".to_string(),
"A".to_string(),
[1.00_f32, 0.00_f32, 0.25_f32],
engine::sphere(0.0, 4.0, 0.0, R_INNER)
),
Sphere::new(
"b".to_string(),
"B".to_string(),
[0.00_f32, 0.25_f32, 1.00_f32],
engine::sphere(0.0, -4.0, 0.0, R_INNER)
),
];
for sphere in spheres {
let _ = assembly.try_insert_element(sphere);
}
// get references to the spheres
let [outer, a, b] = ["outer", "a", "b"].map(
|id| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[id].clone()
)
);
// fix the diameters of the outer, sun, and moon spheres
for (sphere, radius) in [
(outer.clone(), R_OUTER),
(a.clone(), R_INNER),
(b.clone(), R_INNER)
] {
let curvature_regulator = sphere.regulators().with_untracked(
|regs| regs.first().unwrap().clone()
);
let curvature = 0.5 / radius;
curvature_regulator.set_point().set(
SpecifiedValue::try_from(curvature.to_string()).unwrap()
);
}
// set the inversive distances between the spheres. as described above, the
// initial configuration deliberately violates these constraints
for inner in [a, b] {
let tangency = InversiveDistanceRegulator::new([outer.clone(), inner]);
tangency.set_point.set(SpecifiedValue::try_from("1".to_string()).unwrap());
assembly.insert_regulator(Rc::new(tangency));
}
}
// the initial configuration of this test assembly deliberately violates the
// constraints, so loading the assembly will trigger a non-trivial realization
fn load_off_center_assemb(assembly: &Assembly) {
// create a point almost at the origin and a sphere centered on the origin
let _ = assembly.try_insert_element(
Point::new(
"point".to_string(),
"Point".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::point(1e-9, 0.0, 0.0)
),
);
let _ = assembly.try_insert_element(
Sphere::new(
"sphere".to_string(),
"Sphere".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(0.0, 0.0, 0.0, 1.0)
),
);
// get references to the elements
let point_and_sphere = ["point", "sphere"].map(
|id| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[id].clone()
)
);
// put the point on the sphere
let incidence = InversiveDistanceRegulator::new(point_and_sphere);
incidence.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
assembly.insert_regulator(Rc::new(incidence));
}
// setting the inversive distances between the vertices to -2 gives a regular
// tetrahedron with side length 1, whose insphere and circumsphere have radii
// sqrt(1/6) and sqrt(3/2), respectively. to measure those radii, set an
// inversive distance of -1 between the insphere and each face, and then set an
// inversive distance of 0 between the circumsphere and each vertex
fn load_radius_ratio_assemb(assembly: &Assembly) {
let index_range = 1..=4;
// create the spheres
const GRAY: ElementColor = [0.75_f32, 0.75_f32, 0.75_f32];
let spheres = [
Sphere::new(
"sphere_faces".to_string(),
"Insphere".to_string(),
GRAY,
engine::sphere(0.0, 0.0, 0.0, 0.5)
),
Sphere::new(
"sphere_vertices".to_string(),
"Circumsphere".to_string(),
GRAY,
engine::sphere(0.0, 0.0, 0.0, 0.25)
)
];
for sphere in spheres {
let _ = assembly.try_insert_element(sphere);
}
// create the vertices
let vertices = izip!(
index_range.clone(),
[
[1.00_f32, 0.50_f32, 0.75_f32],
[1.00_f32, 0.75_f32, 0.50_f32],
[1.00_f32, 1.00_f32, 0.50_f32],
[0.75_f32, 0.50_f32, 1.00_f32]
].into_iter(),
[
engine::point(-0.6, -0.8, -0.6),
engine::point(-0.6, 0.8, 0.6),
engine::point(0.6, -0.8, 0.6),
engine::point(0.6, 0.8, -0.6)
].into_iter()
).map(
|(k, color, representation)| {
Point::new(
format!("v{k}"),
format!("Vertex {k}"),
color,
representation
)
}
);
for vertex in vertices {
let _ = assembly.try_insert_element(vertex);
}
// create the faces
let base_dir = Vector3::new(1.0, 0.75, 1.0).normalize();
let offset = base_dir.dot(&Vector3::new(-0.6, 0.8, 0.6));
let faces = izip!(
index_range.clone(),
[
[1.00_f32, 0.00_f32, 0.25_f32],
[1.00_f32, 0.25_f32, 0.00_f32],
[0.75_f32, 0.75_f32, 0.00_f32],
[0.25_f32, 0.00_f32, 1.00_f32]
].into_iter(),
[
engine::sphere_with_offset(base_dir[0], base_dir[1], base_dir[2], offset, 0.0),
engine::sphere_with_offset(base_dir[0], -base_dir[1], -base_dir[2], offset, 0.0),
engine::sphere_with_offset(-base_dir[0], base_dir[1], -base_dir[2], offset, 0.0),
engine::sphere_with_offset(-base_dir[0], -base_dir[1], base_dir[2], offset, 0.0)
].into_iter()
).map(
|(k, color, representation)| {
Sphere::new(
format!("f{k}"),
format!("Face {k}"),
color,
representation
)
}
);
for face in faces {
face.ghost().set(true);
let _ = assembly.try_insert_element(face);
}
// impose the constraints
for j in index_range.clone() {
let [face_j, vertex_j] = [
format!("f{j}"),
format!("v{j}")
].map(
|id| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&id].clone()
)
);
// make the faces planar
let curvature_regulator = face_j.regulators().with_untracked(
|regs| regs.first().unwrap().clone()
);
curvature_regulator.set_point().set(
SpecifiedValue::try_from("0".to_string()).unwrap()
);
for k in index_range.clone().filter(|&index| index != j) {
let vertex_k = assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&format!("v{k}")].clone()
);
// fix the distances between the vertices
if j < k {
let distance_regulator = InversiveDistanceRegulator::new(
[vertex_j.clone(), vertex_k.clone()]
);
assembly.insert_regulator(Rc::new(distance_regulator));
}
// put the vertices on the faces
let incidence_regulator = InversiveDistanceRegulator::new([face_j.clone(), vertex_k.clone()]);
incidence_regulator.set_point.set(SpecifiedValue::try_from("0".to_string()).unwrap());
assembly.insert_regulator(Rc::new(incidence_regulator));
}
}
}
// to finish setting up the problem, fix the following curvatures:
// sun 1
// moon 5/3 = 1.666666666666666...
// chain1 2
// a tiny `x` or `z` nudge of the outer sphere reliably prevents realization
// failures before they happen, or resolves them after they happen. the result
// depends sensitively on the translation direction, suggesting that realization
// is failing because the engine is having trouble breaking a symmetry
// /* TO DO */
// the engine's performance on this problem is scale-dependent! with the current
// initial conditions, realization fails for any order of imposing the remaining
// curvature constraints. scaling everything up by a factor of ten, as done in
// the original problem, makes realization succeed reliably. one potentially
// relevant difference is that a lot of the numbers in the current initial
// conditions are exactly representable as floats, unlike the analogous numbers
// in the scaled-up problem. the inexact representations might break the
// symmetry that's getting the engine stuck
fn load_irisawa_hexlet_assemb(assembly: &Assembly) {
let index_range = 1..=6;
let colors = [
[1.00_f32, 0.00_f32, 0.25_f32],
[1.00_f32, 0.25_f32, 0.00_f32],
[0.75_f32, 0.75_f32, 0.00_f32],
[0.25_f32, 1.00_f32, 0.00_f32],
[0.00_f32, 0.25_f32, 1.00_f32],
[0.25_f32, 0.00_f32, 1.00_f32]
].into_iter();
// create the spheres
let spheres = [
Sphere::new(
"outer".to_string(),
"Outer".to_string(),
[0.5_f32, 0.5_f32, 0.5_f32],
engine::sphere(0.0, 0.0, 0.0, 1.5)
),
Sphere::new(
"sun".to_string(),
"Sun".to_string(),
[0.75_f32, 0.75_f32, 0.75_f32],
engine::sphere(0.0, -0.75, 0.0, 0.75)
),
Sphere::new(
"moon".to_string(),
"Moon".to_string(),
[0.25_f32, 0.25_f32, 0.25_f32],
engine::sphere(0.0, 0.75, 0.0, 0.75)
),
].into_iter().chain(
index_range.clone().zip(colors).map(
|(k, color)| {
let ang = (k as f64) * PI/3.0;
Sphere::new(
format!("chain{k}"),
format!("Chain {k}"),
color,
engine::sphere(1.0 * ang.sin(), 0.0, 1.0 * ang.cos(), 0.5)
)
}
)
);
for sphere in spheres {
let _ = assembly.try_insert_element(sphere);
}
// put the outer sphere in ghost mode and fix its curvature
let outer = assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id["outer"].clone()
);
outer.ghost().set(true);
let outer_curvature_regulator = outer.regulators().with_untracked(
|regs| regs.first().unwrap().clone()
);
outer_curvature_regulator.set_point().set(
SpecifiedValue::try_from((1.0 / 3.0).to_string()).unwrap()
);
// impose the desired tangencies
let [outer, sun, moon] = ["outer", "sun", "moon"].map(
|id| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[id].clone()
)
);
let chain = index_range.map(
|k| assembly.elements_by_id.with_untracked(
|elts_by_id| elts_by_id[&format!("chain{k}")].clone()
)
);
for (chain_sphere, chain_sphere_next) in chain.clone().zip(chain.cycle().skip(1)) {
for (other_sphere, inversive_distance) in [
(outer.clone(), "1"),
(sun.clone(), "-1"),
(moon.clone(), "-1"),
(chain_sphere_next.clone(), "-1")
] {
let tangency = InversiveDistanceRegulator::new([chain_sphere.clone(), other_sphere]);
tangency.set_point.set(SpecifiedValue::try_from(inversive_distance.to_string()).unwrap());
assembly.insert_regulator(Rc::new(tangency));
}
}
let outer_sun_tangency = InversiveDistanceRegulator::new([outer.clone(), sun]);
outer_sun_tangency.set_point.set(SpecifiedValue::try_from("1".to_string()).unwrap());
assembly.insert_regulator(Rc::new(outer_sun_tangency));
let outer_moon_tangency = InversiveDistanceRegulator::new([outer.clone(), moon]);
outer_moon_tangency.set_point.set(SpecifiedValue::try_from("1".to_string()).unwrap());
assembly.insert_regulator(Rc::new(outer_moon_tangency));
}
// --- chooser ---
/* DEBUG */
#[component]
pub fn TestAssemblyChooser() -> View {
// create an effect that loads the selected test assembly
let assembly_name = create_signal("general".to_string());
create_effect(move || {
// get name of chosen assembly
let name = assembly_name.get_clone();
console::log_1(
&JsValue::from(format!("Showing assembly \"{}\"", name.clone()))
);
batch(|| {
let state = use_context::<AppState>();
let assembly = &state.assembly;
// pause realization
assembly.keep_realized.set(false);
// clear state
assembly.regulators.update(|regs| regs.clear());
assembly.elements.update(|elts| elts.clear());
assembly.elements_by_id.update(|elts_by_id| elts_by_id.clear());
assembly.descent_history.set(DescentHistory::new());
state.selection.update(|sel| sel.clear());
// load assembly
match name.as_str() {
"general" => load_gen_assemb(assembly),
"low-curv" => load_low_curv_assemb(assembly),
"pointed" => load_pointed_assemb(assembly),
"tridim-icosahedron" => load_tridim_icosahedron_assemb(assembly),
"dodeca-packing" => load_dodeca_packing_assemb(assembly),
"balanced" => load_balanced_assemb(assembly),
"off-center" => load_off_center_assemb(assembly),
"radius-ratio" => load_radius_ratio_assemb(assembly),
"irisawa-hexlet" => load_irisawa_hexlet_assemb(assembly),
_ => ()
};
// resume realization
assembly.keep_realized.set(true);
});
});
// build the chooser
view! {
select(bind:value=assembly_name) {
option(value="general") { "General" }
option(value="low-curv") { "Low-curvature" }
option(value="pointed") { "Pointed" }
option(value="tridim-icosahedron") { "Tridiminished icosahedron" }
option(value="dodeca-packing") { "Dodecahedral packing" }
option(value="balanced") { "Balanced" }
option(value="off-center") { "Off-center" }
option(value="radius-ratio") { "Radius ratio" }
option(value="irisawa-hexlet") { "Irisawa hexlet" }
option(value="empty") { "Empty" }
}
}
}

File diff suppressed because it is too large Load diff

View file

@ -1 +0,0 @@
pub mod engine;

View file

@ -1,69 +0,0 @@
mod assembly;
mod components;
mod engine;
mod specified;
#[cfg(test)]
mod tests;
use std::{collections::BTreeSet, rc::Rc};
use sycamore::prelude::*;
use assembly::{Assembly, Element};
use components::{
add_remove::AddRemove,
diagnostics::Diagnostics,
display::Display,
outline::Outline
};
#[derive(Clone)]
struct AppState {
assembly: Assembly,
selection: Signal<BTreeSet<Rc<dyn Element>>>
}
impl AppState {
fn new() -> AppState {
AppState {
assembly: Assembly::new(),
selection: create_signal(BTreeSet::default())
}
}
// in single-selection mode, select the given element. in multiple-selection
// mode, toggle whether the given element is selected
fn select(&self, element: &Rc<dyn Element>, multi: bool) {
if multi {
self.selection.update(|sel| {
if !sel.remove(element) {
sel.insert(element.clone());
}
});
} else {
self.selection.update(|sel| {
sel.clear();
sel.insert(element.clone());
});
}
}
}
fn main() {
// set the console error panic hook
#[cfg(feature = "console_error_panic_hook")]
console_error_panic_hook::set_once();
sycamore::render(|| {
provide_context(AppState::new());
view! {
div(id="sidebar") {
AddRemove {}
Outline {}
Diagnostics {}
}
Display {}
}
});
}

View file

@ -1,44 +0,0 @@
use std::num::ParseFloatError;
// a real number described by a specification string. since the structure is
// read-only, we can guarantee that `spec` always specifies `value` in the
// following format
// ┌──────────────────────────────────────────────────────┬───────────┐
// │ `spec` │ `value` │
// ┝━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┿━━━━━━━━━━━┥
// │ a string that parses to the floating-point value `x` │ `Some(x)` │
// ├──────────────────────────────────────────────────────┼───────────┤
// │ the empty string │ `None` │
// └──────────────────────────────────────────────────────┴───────────┘
#[readonly::make]
pub struct SpecifiedValue {
pub spec: String,
pub value: Option<f64>
}
impl SpecifiedValue {
pub fn from_empty_spec() -> SpecifiedValue {
SpecifiedValue { spec: String::new(), value: None }
}
pub fn is_present(&self) -> bool {
matches!(self.value, Some(_))
}
}
// a `SpecifiedValue` can be constructed from a specification string, formatted
// as described in the comment on the structure definition. the result is `Ok`
// if the specification is properly formatted, and `Error` if not
impl TryFrom<String> for SpecifiedValue {
type Error = ParseFloatError;
fn try_from(spec: String) -> Result<Self, Self::Error> {
if spec.is_empty() {
Ok(SpecifiedValue::from_empty_spec())
} else {
spec.parse::<f64>().map(
|value| SpecifiedValue { spec: spec, value: Some(value) }
)
}
}
}

View file

@ -1,14 +0,0 @@
use std::process::Command;
// build and bundle the application, reporting success if there are no errors or
// warnings. to see this test fail while others succeed, try moving `index.html`
// or one of the assets that it links to
#[test]
fn trunk_build_test() {
let build_status = Command::new("trunk")
.arg("build")
.env("RUSTFLAGS", "-D warnings")
.status()
.expect("Call to Trunk failed");
assert!(build_status.success());
}

View file

@ -8,8 +8,7 @@ using Optim
export
rand_on_shell, Q, DescentHistory,
realize_gram_gradient, realize_gram_newton, realize_gram_optim,
realize_gram_alt_proj, realize_gram
realize_gram_gradient, realize_gram_newton, realize_gram_optim, realize_gram
# === guessing ===
@ -60,10 +59,11 @@ nullmix = [Matrix{Int64}(I, 3, 3) zeros(Int64, 3, 2); zeros(Int64, 2, 3) [-1 1;
unmix = [Matrix{Int64}(I, 3, 3) zeros(Int64, 3, 2); zeros(Int64, 2, 3) [-1 1; 1 1]]
# the Lorentz form
## [old] Q = diagm([1, 1, 1, 1, -1])
Q = [Matrix{Int64}(I, 3, 3) zeros(Int64, 3, 2); zeros(Int64, 2, 3) [0 -2; -2 0]]
# project a matrix onto the subspace of matrices whose entries vanish away from
# the given indices
# project a matrix onto the subspace of matrices whose entries vanish at the
# given indices
function proj_to_entries(mat, indices)
result = zeros(size(mat))
for (j, k) in indices
@ -144,7 +144,7 @@ function realize_gram_gradient(
break
end
# find the negative gradient of the loss function
# find negative gradient of loss function
neg_grad = 4*Q*L*Δ_proj
slope = norm(neg_grad)
dir = neg_grad / slope
@ -233,7 +233,7 @@ function realize_gram_newton(
break
end
# find the negative gradient of the loss function
# find the negative gradient of loss function
neg_grad = 4*Q*L*Δ_proj
# find the negative Hessian of the loss function
@ -314,129 +314,6 @@ function realize_gram_optim(
)
end
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
# explicit entry of `gram`. use gradient descent starting from `guess`, with an
# alternate technique for finding the projected base step from the unprojected
# Hessian
function realize_gram_alt_proj(
gram::SparseMatrixCSC{T, <:Any},
guess::Matrix{T},
frozen = CartesianIndex[];
scaled_tol = 1e-30,
min_efficiency = 0.5,
backoff = 0.9,
reg_scale = 1.1,
max_descent_steps = 200,
max_backoff_steps = 110
) where T <: Number
# start history
history = DescentHistory{T}()
# find the dimension of the search space
dims = size(guess)
element_dim, construction_dim = dims
total_dim = element_dim * construction_dim
# list the constrained entries of the gram matrix
J, K, _ = findnz(gram)
constrained = zip(J, K)
# scale the tolerance
scale_adjustment = sqrt(T(length(constrained)))
tol = scale_adjustment * scaled_tol
# convert the frozen indices to stacked format
frozen_stacked = [(index[2]-1)*element_dim + index[1] for index in frozen]
# initialize search state
L = copy(guess)
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
# use Newton's method with backtracking and gradient descent backup
for step in 1:max_descent_steps
# stop if the loss is tolerably low
if loss < tol
break
end
# find the negative gradient of the loss function
neg_grad = 4*Q*L*Δ_proj
# find the negative Hessian of the loss function
hess = Matrix{T}(undef, total_dim, total_dim)
indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim]
for (j, k) in indices
basis_mat = basis_matrix(T, j, k, dims)
neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat
neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained)
deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj)
hess[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim)
end
hess_sym = Hermitian(hess)
push!(history.hess, hess_sym)
# regularize the Hessian
min_eigval = minimum(eigvals(hess_sym))
push!(history.positive, min_eigval > 0)
if min_eigval <= 0
hess -= reg_scale * min_eigval * I
end
# compute the Newton step
neg_grad_stacked = reshape(neg_grad, total_dim)
for k in frozen_stacked
neg_grad_stacked[k] = 0
hess[k, :] .= 0
hess[:, k] .= 0
hess[k, k] = 1
end
base_step_stacked = Hermitian(hess) \ neg_grad_stacked
base_step = reshape(base_step_stacked, dims)
push!(history.base_step, base_step)
# store the current position, loss, and slope
L_last = L
loss_last = loss
push!(history.scaled_loss, loss / scale_adjustment)
push!(history.neg_grad, neg_grad)
push!(history.slope, norm(neg_grad))
# find a good step size using backtracking line search
push!(history.stepsize, 0)
push!(history.backoff_steps, max_backoff_steps)
empty!(history.last_line_L)
empty!(history.last_line_loss)
rate = one(T)
step_success = false
base_target_improvement = dot(neg_grad, base_step)
for backoff_steps in 0:max_backoff_steps
history.stepsize[end] = rate
L = L_last + rate * base_step
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
improvement = loss_last - loss
push!(history.last_line_L, L)
push!(history.last_line_loss, loss / scale_adjustment)
if improvement >= min_efficiency * rate * base_target_improvement
history.backoff_steps[end] = backoff_steps
step_success = true
break
end
rate *= backoff
end
# if we've hit a wall, quit
if !step_success
return L_last, false, history
end
end
# return the factorization and its history
push!(history.scaled_loss, loss / scale_adjustment)
L, loss < tol, history
end
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
# explicit entry of `gram`. use gradient descent starting from `guess`
function realize_gram(
@ -445,6 +322,7 @@ function realize_gram(
frozen = nothing;
scaled_tol = 1e-30,
min_efficiency = 0.5,
init_rate = 1.0,
backoff = 0.9,
reg_scale = 1.1,
max_descent_steps = 200,
@ -475,19 +353,20 @@ function realize_gram(
unfrozen_stacked = reshape(is_unfrozen, total_dim)
end
# initialize search state
# initialize variables
grad_rate = init_rate
L = copy(guess)
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
# use Newton's method with backtracking and gradient descent backup
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
for step in 1:max_descent_steps
# stop if the loss is tolerably low
if loss < tol
break
end
# find the negative gradient of the loss function
# find the negative gradient of loss function
neg_grad = 4*Q*L*Δ_proj
# find the negative Hessian of the loss function
@ -542,7 +421,6 @@ function realize_gram(
empty!(history.last_line_loss)
rate = one(T)
step_success = false
base_target_improvement = dot(neg_grad, base_step)
for backoff_steps in 0:max_backoff_steps
history.stepsize[end] = rate
L = L_last + rate * base_step
@ -551,7 +429,7 @@ function realize_gram(
improvement = loss_last - loss
push!(history.last_line_L, L)
push!(history.last_line_loss, loss / scale_adjustment)
if improvement >= min_efficiency * rate * base_target_improvement
if improvement >= min_efficiency * rate * dot(neg_grad, base_step)
history.backoff_steps[end] = backoff_steps
step_success = true
break

View file

@ -74,13 +74,4 @@ if success
for k in 5:9
println(" ", 1 / L[4,k], " sun")
end
end
# test an alternate technique for finding the projected base step from the
# unprojected Hessian
L_alt, success_alt, history_alt = Engine.realize_gram_alt_proj(gram, guess, frozen)
completed_gram_alt = L_alt'*Engine.Q*L_alt
println("\nDifference in result using alternate projection:\n")
display(completed_gram_alt - completed_gram)
println("\nDifference in steps: ", size(history_alt.scaled_loss, 1) - size(history.scaled_loss, 1))
println("Difference in loss: ", history_alt.scaled_loss[end] - history.scaled_loss[end], "\n")
end

View file

@ -64,13 +64,4 @@ else
println("\nFailed to reach target accuracy")
end
println("Steps: ", size(history.scaled_loss, 1))
println("Loss: ", history.scaled_loss[end], "\n")
# test an alternate technique for finding the projected base step from the
# unprojected Hessian
L_alt, success_alt, history_alt = Engine.realize_gram_alt_proj(gram, guess, frozen)
completed_gram_alt = L_alt'*Engine.Q*L_alt
println("\nDifference in result using alternate projection:\n")
display(completed_gram_alt - completed_gram)
println("\nDifference in steps: ", size(history_alt.scaled_loss, 1) - size(history.scaled_loss, 1))
println("Difference in loss: ", history_alt.scaled_loss[end] - history.scaled_loss[end], "\n")
println("Loss: ", history.scaled_loss[end], "\n")

View file

@ -93,13 +93,4 @@ if success
infty = BigFloat[0, 0, 0, 0, 1]
radius_ratio = dot(infty, Engine.Q * L[:,5]) / dot(infty, Engine.Q * L[:,6])
println("\nCircumradius / inradius: ", radius_ratio)
end
# test an alternate technique for finding the projected base step from the
# unprojected Hessian
L_alt, success_alt, history_alt = Engine.realize_gram_alt_proj(gram, guess, frozen)
completed_gram_alt = L_alt'*Engine.Q*L_alt
println("\nDifference in result using alternate projection:\n")
display(completed_gram_alt - completed_gram)
println("\nDifference in steps: ", size(history_alt.scaled_loss, 1) - size(history.scaled_loss, 1))
println("Difference in loss: ", history_alt.scaled_loss[end] - history.scaled_loss[end], "\n")
end

View file

@ -2,29 +2,28 @@
(proposed by Alex Kontorovich as a practical system for doing 3D geometric calculations)
These coordinates are of form $I=(c, b, x, y, z)$ where we think of $c$ as the co-radius, $b$ as the "bend" (reciprocal radius), and $x, y, z$ as the "Euclidean" part, which we abbreviate $E_I$. There is an underlying basic quadratic form $Q(I_1,I_2) = (c_1b_2+c_2b_1)/2 - x_1x_2 -y_1y_2-z_1z_2$ which aids in calculation/verification of coordinates in this representation. We have:
These coordinates are of form $I=(c, r, x, y, z)$ where we think of $c$ as the co-radius, $r$ as the radius, and $x, y, z$ as the "Euclidean" part, which we abbreviate $E_I$. There is an underlying basic quadratic form $Q(I_1,I_2) = (c_1r_2+c_2r_1)/2 - x_1x_2 -y_1y_2-z_1z_2$ which aids in calculation/verification of coordinates in this representation. We have:
| Entity or Relationship | Representation | Comments/questions |
| ---------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Sphere $s$ with radius $r>0$ centered on $P = (x,y,z)$ | $I_s = (\frac1{c}, \frac1{r}, \frac{x}{r}, \frac{y}{r}, \frac{z}{r})$ satisfying $Q(I_s,I_s) = -1,$ i.e., $c = r/(\|P\|^2 - r^2)$. | Note that $1/c = \|P\|^2/r - r$, so there is no trouble if $\|P\| = r$; we just get first coordinate to be 0. Using the point representation $I_P$ from below, let's orient the sphere so that its normals point into the "positive side," where $Q(I_P, I_s) > 0$. The vector $I_s$ then represents a sphere with outward normals, while $-I_s$ represents one with inward normals. |
| Plane $p$ with unit normal $(x,y,z)$ through the (Euclidean) point $(sx,sy,sz)$ | $I_p = (-2s, 0, -x, -y, -z)$ | Note that $Q(I_p, I_p)$ is still $-1$. We orient planes using the same convention we use for spheres. For example, $(-2, 0, -1/\sqrt3, -1/\sqrt3, -1/\sqrt3)$ and $(2, 0, 1/\sqrt3, 1/\sqrt3, 1/\sqrt3)$ represent planes that coincide in space, which have their normals pointing away from and toward the origin, respectively. Note that the ray from $(sx, sy, sz) \in p$ in direction $(-x, -y, -z)$ is the ray perpendicular to the plane through the origin; since $(-x, -y, -z)$ is a unit vector, $(sx, sy, sz)$ and hence $p$ is at distance $s$ from the origin. These coordinates are essentially the limit of a sphere's coordinates as its radius goes to infinity, or equivalently, as its bend goes to 0. |
| Point $P$ with Euclidean coordinates $(x,y,z)$ | $I_P = (\|P\|^2, 1, x, y, z)$ | Note $Q(I_P,I_P) = 0$. This gives us the freedom to choose a different normalization. For example, we could scale the representation shown here by $(\|P\|^2+1)^{-1}$, putting it on the sphere where the light cone intersects the plane where the first two coordinates sum to $1$. |
| ∞, the "point at infinity" | $I_\infty = (1,0,0,0,0)$ | The only solution to $Q(I,I) = 0$ not covered by (some normalization of) the above case. |
| Point $P$ lies on sphere or plane given by $I$ | $Q(I_P, I) = 0$ | Actually also works if $I$ is the coordinates of a point, in which case "lies on" simply means "coincides with". |
| Sphere/planes represented by $I$ and $J$ are tangent | If $I$ and $J$ have the same orientation where they touch, $Q(I,J) = -1$. If they have opposing orientations, $Q(I,J) = 1$. | For example, the $xy$ plane with normal $-e_z$, represented by $(0,0,0,0,1)$, is tangent with matching orientation to the unit sphere centered at $(0,0,1)$ with outward normals, represented by $(0,1,0,0,1).$ Accordingly, their $Q$ - product is $-1$. |
| Sphere/planes represented by $I$ and $J$ intersect (respectively, don't intersect) | $\lvert Q(I,J)\rvert \le (\text{resp. }>)\; 1$ | Follows from the angle formula and the tangency condition, at least conceptually. One subtlety: parallel planes have $Q$ - product $\pm 1$, because they intersect at infinity (and in fact, are "tangent" there)! |
| $P$ is center of sphere rep'd by $I$ | $Q(I, I_P) = -r/2$, where $1/r = 2Q(I_\infty, I)$ is the signed bend of the sphere, and $I_P$ is normalized in the standard way, which is to set $Q(I_\infty, I_P) = 1/2$ | This relationship is equivalent to both of the following. (1) The point $P$ has signed distance $-r$ from the sphere. (2) Inversion across the sphere maps $\infty$ to $P$. |
| Distance between points $P$ and $R$ is $d$ | $Q(I_P, I_R) = d^2/2$ | If $P$ and $R$ are represented by non-normalized vectors $V_P$ and $V_R$, the relation becomes $Q(V_P, V_R) = 2\,Q(V_P, I_\infty)\,Q(V_R, I_\infty)\,d^2$. This version of the relation makes it easier to see why $d$ goes to infinity as $P$ or $R$ approaches the point at infinity. |
| Signed distance between point rep'd by $V$ and sphere/plane rep'd by $I$ is $d$ | In general, $\frac{Q(I, V)}{2Q(I_\infty, V)} = Q(I_\infty, I)\,d^2 + d$. When $V$ is normalized in the usual way, this simplifies to $Q(I, V) = d^2/r + d$ for a sphere of radius $r$, and to $Q(I, V) = d$ for a plane. | We can use a Euclidean motion, represented linearly by a Lorentz transformation that fixes $I_\infty$, to put the point on the $z$ axis and put the nearest point on the sphere/plane at the origin with its normal pointing in the positive $z$ direction. Then the sphere/plane is represented by $I = (0, 1/r, 0, 0, -1)$, and the point can be represented by any multiple of $I_P = (d^2, 1, 0, 0, d)$, giving $Q(I, I_P) = d^2/2r + d.$ We turn this into a general expression by writing it in terms of Lorentz-invariant quantities and making it independent of the normalization of $I_P$. |
| Distance between sphere/planes rep by $I$ and $J$ | Note that for any two Euclidean-concentric spheres rep by $I$ and $J$ with radius $r$ and $s,$ $Q(I,J) = -\frac12\left(\frac rs + \frac sr\right)$ depends only on the ratio of $r$ and $s$. So this can't give something that determines the Euclidean distance between the two spheres, which presumably grows as the two spheres are blown up proportionally. For another example, for any two parallel planes, $Q(I,J) = \pm1$. | Alex had said: $Q(I,J)=\cosh(d/2)^2$ maybe where d is distance in usual hyperbolic metric. Or maybe $\cosh(d)$. That may be right depending on what's meant by the hyperbolic metric there, but it seems like it won't determine a reasonable Euclidean distance between planes, which should differ between different pairs of parallel planes. |
| Sphere centered on point $P$ through point $R$ | | Probably just calculate distance etc. |
| Plane rep'd by $I$ goes through center of sphere rep'd by $J$ | This is equivalent to the plane being perpendicular to the sphere: that is, $Q(I, J) = 0$. | |
| Dihedral angle between planes or spheres rep by $I$ and $J$ | $\theta = \arccos(Q(I,J))$ | Aaron Fenyes points out: The angle between spheres in $S^3$ matches the angle between the planes they bound in $R^{(1,4)}$, which matches the angle between the spacelike vectors perpendicular to those planes. So we should have $Q(I,J) = \cos(\theta)$. Note that when the spheres do not intersect, we can interpret this as the "imaginary angle" between them, via $\cosh(t) = \cos(it)$. |
| Points $R, P, S$ are collinear | Maybe just cross product of two differences is 0. Or, $R,P,S,\infty$ lie on a circle, or equivalently, $I_R,I_P,I_S,I_\infty$ span a plane (rather than a three-space). Or we can add two planes constrained to be perpendicular with one constrained to contain the origin, and all three points constrained to lie on both. But that's a lot of auxiliary entities and constraints... | $R,P,S$ lying on a line isn't a conformal property, but $R,P,S,\infty$ lying on a circle is. |
| Plane through noncollinear $R, P, S$ | Should be, just solve $Q(I, I_R) = 0$ etc. | |
| circle | Maybe concentric sphere and the containing plane? Note it is easy to constrain the relationship between those two: they must be perpendicular. | Defn: circle is intersection of two spheres. That does cover lines. But you lose the canonicalness |
| line | Maybe two perpendicular containing planes? Maybe the plane perpendicular to the line and through origin, together with the point of the line on that plane? Or maybe just as a bag of collinear points? | The first is the limiting case of the possible circle rep, but it is not canonical. However, there is a distinguished "standard" choice we could make: always choose one plane to contain the origin and the line, and the other to be the perpendicular plane containing the line. That choice or Plücker coordinates might be the best we can do. If we use the standardized perpendicular planes choice, then adding a line would be equivalent to adding two planes and the two constraints that one contains the origin and the other is perpendicular to it. That doesn't seem so bad. The second convention (perpendicular plane through the origin and a point on it) appears to be canonical, but there doesn't seem to be a circle representation that tends to it in the limit. |
| Inversion of entity represented by $v$ across sphere $s$, rep'd by $I_s$ | $v \mapsto v + 2Q(I_s, v)\,I_s$ | This is just an educated guess, but its behavior is consistent with inversion in at least two ways. (1) It fixes points on $s$ and spheres perpendicular to $s$. (2) It preserves dihedral angles with $s$. |
| Entity or Relationship | Representation | Comments/questions |
| ------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Sphere s with radius r>0 centered on P = (x,y,z) | $I_s = (1/c, 1/r, x/r, y/r, z/r)$ satisfying $Q(I_s,I_s) = -1$, i.e., $c = r/(\|P\|^2 - r^2)$. | Can also write $I_s = (\|P\|^2/r - r, 1/r, x/r. y/r, z/r)$—so there is no trouble if $\|E_{I_s}\| = r$, just get first coordinate to be 0. |
| Plane p with unit normal (x,y,z) through the point s(x,y,z) | $I_p = (-2s, 0, -x, -y, -z)$ | Note $Q(I_p, I_p)$ is still 1. |
| Point P with Euclidean coordinates (x,y,z) | $I_P = (\|P\|^2, 1, x, y, z)$ | Note $Q(I_P,I_P) = 0$.  Because of this we might choose  some other scaling of the inversive coordinates, say $(\||P\||,1/\||P\||,x/\||P\||,y/\||P\||,z/\||P\||)$ instead, but that fails at the origin, and likely won't have some of the other nice properties listed below.  Note that scaling just the co-radius by $s$ and the radius by $1/s$ (which still preserves $Q=0$) dilates by a factor of $s$ about the origin, so that $(\|P\|, \|P\|, x, y, z)$, which might look symmetric, would actually have to represent the Euclidean point $(x/\||P\||, y/\||P\||, z/\||P\||)$ . |
| ∞, the "point at infinity" | $I_\infty = (1,0,0,0,0)$ | The only solution to $Q(I,I) = 0$ not covered by the above case. |
| P lies on sphere or plane given by I | $Q(I_P, I) = 0$ | |
| Sphere/planes represented by I and J are tangent | If $I$ and $J$ have the same orientation where they touch, $Q(I,J) = -1$. If they have opposing orientations, $Q(I,J) = 1$. | For example, the $xy$ plane with normal $-e_z$, represented by $(0,0,0,0,1)$, is tangent with matching orientation to the unit sphere centered at $(0,0,1)$ with outward normals, represented by $(0,1,0,0,1)$. Accordingly, their $Q$-product is 1. |
| Sphere/planes represented by I and J intersect (respectively, don't intersect) | $\|Q(I,J)\| < (\text{resp. }>)\; 1$ | Follows from the angle formula, at least conceptually. |
| P is center of sphere represented by I | Well, $Q(I_P, I)$ comes out to be $(\|P\|^2/r - r + \|P\|^2/r)/2 - \|P\|^2/r$ or just $-r/2$ . | Is it if and only if ?   No this probably doesn't work because center is not conformal quantity. |
| Distance between P and R is d | $Q(I_P, I_R) = d^2/2$ | |
| Distance between P and sphere/plane rep by I | | In the very simple case of a plane $I$ rep'd by $(2s, 0, x, y, z)$ and a point $P$ that lies on its perpendicular through the origin, rep'd by $(r^2, 1, rx, ry, rz)$ we get $Q(I, I_p) = s-r$, which is indeed the signed distance between $I$ and $P$. Not sure if this generalizes to other combinations? |
| Distance between sphere/planes rep by I and J | Note that for any two Euclidean-concentric spheres rep by $I$ and $J$ with radius $r$ and $s,$ $Q(I,J) = -\frac12\left(\frac rs  + \frac sr\right)$ depends only on the ratio of $r$ and $s$. So this can't give something that determines the Euclidean distance between the two spheres, which presumably grows as the two spheres are blown up proportionally. For another example, for any two parallel planes, $Q(I,J) = \pm1$. | Alex had said: $Q(I,J)=\cosh(d/2)^2$ maybe where d is distance in usual hyperbolic metric. Or maybe $\cosh(d)$. That may be right depending on what's meant by the hyperbolic metric there, but it seems like it won't determine a reasonable Euclidean distance between planes, which should differ between different pairs of parallel planes. |
| Sphere centered on P through R | | Probably just calculate distance etc. |
| Plane rep'd by I goes through center of sphere rep'd by J | I think this is equivalent to the plane being perpendicular to the sphere, i.e. $Q(I,J) = 0$. | |
| Dihedral angle between planes (or spheres?) rep by I and J | $\theta = \arccos(Q(I,J))$ | Aaron Fenyes points out: The angle between spheres in $S^3$ matches the angle between the planes they bound in $R^{(1,4)}$, which matches the angle between the spacelike vectors perpendicular to those planes. So we should have $Q(I,J) = \cos(\theta)$. Note that when the spheres do not intersect, we can interpret this as the "imaginary angle" between them, via $\cosh(t) = \cos(it)$. |
| R, P, S are collinear | Maybe just cross product of two differences is 0. Or, $R,P,S,\infty$ lie on a circle, or equivalently, $I_R,I_P,I_S,I_\infty$ span a plane (rather than a three-space). | $R,P,S$ lying on a line isn't a conformal property, but $R,P,S,\infty$ lying on a circle is. |
| Plane through noncollinear R, P, S | Should be, just solve $Q(I, I_R) = 0$ etc. | |
| circle | Maybe concentric sphere and the containing plane? Note it is easy to constrain the relationship between those two: they must be perpendicular. | Defn: circle is intersection of two spheres. That does cover lines. But you lose the canonicalness |
| line | Maybe two perpendicular containing planes? Maybe the plane perpendicular to the line and through origin, together with the point of the line on that plane? Or maybe just as a bag of collinear points? | The first is the limiting case of the possible circle rep, but it is not canonical. The second appears to be canonical, but I don't see a circle rep that corresponds to it. |
The unification of spheres/planes is indeed attractive for a project like Dyna3. The relationship between this representation and Geometric Algebras is a bit murky; likely it somehow fits under the Geometric Algebra umbrella.
@ -41,25 +40,3 @@ I will have to work out formulas for the Euclidean distance between two entities
In this vein, it seems as though if J1 and J2 are the reps of two points, then Q(J1,J2) = d^2/2. So then the sphere centered at J1 through J2 is (J1-(2Q(J1,J2),0,0,0,0))/sqrt(2Q(J1,J2)). Ugh has a sqrt in it. Similarly for sphere centered at J3 through J2, (J3-(2Q(J3,J2),0000))/sqrt(2Q(J3,J2)). J1,J2,J3 are collinear if these spheres are tangent, i.e. if those vectors have Q-inner-product 1, which is to say Q(J1,J3) - Q(J1,J2) - Q(J3,J2) = 2sqrt(Q(J1,J2)Q(J2,J3)). But maybe that's not the simplest way of putting it. After all, we can just say that the cross-product of the two differences is 0; that has no square roots in it.
One conceivable way to canonicalize lines is to use the *perpendicular* plane that goes through the origin, that's uniquely defined, and anyway just amounts to I = (0,0,d) where d is the ordinary direction vector of the line; and a point J in that plane that the line goes through, which just amounts to J=(r^2,1,E) with Q(I,J) = 0, i.e. E\dot d = 0. It's also the point on the line closest to the origin. The reason that we don't usually use that point as the companion to the direction vector is that the resulting set of six coordinates is not homogeneous. But here that's not an issue, since we have our standard point coordinates and plane coordinates; and for a plane through the origin, only two of the direction coordinates are really free, and then we have the one dot-product relation, so only two of the point coordinates are really free, giving us the correct dimensionality of 4 for the set of lines. So in some sense this says that we could take naively as coordinates for a line the projection of the unit direction vector to the xy plane and the projection of the line's closest point to the origin to the xy plane. That doesn't seem to have any weird gimbal locks or discontinuities or anything. And with these coordinates, you can test if the point E=x,y,z is on the line (dx,dy,cx,cy) by extending (dx,dy) to d via dz = sqrt(1-dx^2 - dy^2), extending (cx,cy) to c by determining cz via d\dot c = 0, and then checking if d\cross(E-c) = 0. And you can see if two lines are parallel just by checking if they have the same direction vector, and if not, you can see if they are coplanar by projecting both of their closest points perpendicularly onto the line in the direction of the cross product of their directions, and if the projections match they are coplanar.
#### Engine Conventions
The coordinate conventions used in the engine are different from the ones used in these notes. Marking the engine vectors and coordinates with $'$, we have
$$I' = (x', y', z', b', c'),$$
where
$$
\begin{align*}
x' & = x & b' & = b/2 \\
y' & = y & c' & = c/2. \\
z' & = z
\end{align*}
$$
The engine uses the quadratic form $Q' = -Q$, which is expressed in engine coordinates as
$$Q'(I'_1, I'_2) = x'_1 x'_2 + y'_1 y'_2 + z'_1 z'_2 - 2(b'_1c'_2 + c'_1 b'_2).$$
In the `engine` module, the matrix of $Q'$ is encoded in the lazy static variable `Q`.
In the engine's coordinate conventions, a sphere with radius $r > 0$ centered on $P = (P_x, P_y, P_z)$ is represented by the vector
$$I'_s = \left(\frac{P_x}{r}, \frac{P_y}{r}, \frac{P_z}{r}, \frac1{2r}, \frac{\|P\|^2 - r^2}{2r}\right),$$
which has the normalization $Q'(I'_s, I'_s) = 1$. The point $P$ is represented by the vector
$$I'_P = \left(P_x, P_y, P_z, \frac{1}{2}, \frac{\|P\|^2}{2}\right).$$
In the `engine` module, these formulas are encoded in the `sphere` and `point` functions.