Add an Irisawa hexlet test assembly
This partial setup of the Irisawa hexlet problem is from the summer 2025 tech demo.
This commit is contained in:
parent
543bc4020f
commit
fae3f4531e
1 changed files with 113 additions and 1 deletions
|
@ -1,5 +1,5 @@
|
|||
use itertools::izip;
|
||||
use std::{f64::consts::FRAC_1_SQRT_2, rc::Rc};
|
||||
use std::{f64::consts::{FRAC_1_SQRT_2, PI}, rc::Rc};
|
||||
use nalgebra::Vector3;
|
||||
use sycamore::prelude::*;
|
||||
use web_sys::{console, wasm_bindgen::JsValue};
|
||||
|
@ -367,6 +367,116 @@ fn load_radius_ratio_assemb(assembly: &Assembly) {
|
|||
}
|
||||
}
|
||||
|
||||
// to finish setting up the problem, fix the following curvatures:
|
||||
// sun 1
|
||||
// moon 5/3 = 1.666666666666666...
|
||||
// chain1 2
|
||||
// a tiny `x` or `z` nudge of the outer sphere reliably prevents realization
|
||||
// failures before they happen, or resolves them after they happen. the result
|
||||
// depends sensitively on the translation direction, suggesting that realization
|
||||
// is failing because the engine is having trouble breaking a symmetry
|
||||
// /* TO DO */
|
||||
// the engine's performance on this problem is scale-dependent! with the current
|
||||
// initial conditions, realization fails for any order of imposing the remaining
|
||||
// curvature constraints. scaling everything up by a factor of ten, as done in
|
||||
// the original problem, makes realization succeed reliably. one potentially
|
||||
// relevant difference is that a lot of the numbers in the current initial
|
||||
// conditions are exactly representable as floats, unlike the analogous numbers
|
||||
// in the scaled-up problem. the inexact representations might break the
|
||||
// symmetry that's getting the engine stuck
|
||||
fn load_irisawa_hexlet_assemb(assembly: &Assembly) {
|
||||
let index_range = 1..=6;
|
||||
let colors = [
|
||||
[1.00_f32, 0.00_f32, 0.25_f32],
|
||||
[1.00_f32, 0.25_f32, 0.00_f32],
|
||||
[0.75_f32, 0.75_f32, 0.00_f32],
|
||||
[0.25_f32, 1.00_f32, 0.00_f32],
|
||||
[0.00_f32, 0.25_f32, 1.00_f32],
|
||||
[0.25_f32, 0.00_f32, 1.00_f32]
|
||||
].into_iter();
|
||||
|
||||
// create the spheres
|
||||
let spheres = [
|
||||
Sphere::new(
|
||||
"outer".to_string(),
|
||||
"Outer".to_string(),
|
||||
[0.5_f32, 0.5_f32, 0.5_f32],
|
||||
engine::sphere(0.0, 0.0, 0.0, 1.5)
|
||||
),
|
||||
Sphere::new(
|
||||
"sun".to_string(),
|
||||
"Sun".to_string(),
|
||||
[0.75_f32, 0.75_f32, 0.75_f32],
|
||||
engine::sphere(0.0, -0.75, 0.0, 0.75)
|
||||
),
|
||||
Sphere::new(
|
||||
"moon".to_string(),
|
||||
"Moon".to_string(),
|
||||
[0.25_f32, 0.25_f32, 0.25_f32],
|
||||
engine::sphere(0.0, 0.75, 0.0, 0.75)
|
||||
),
|
||||
].into_iter().chain(
|
||||
index_range.clone().zip(colors).map(
|
||||
|(k, color)| {
|
||||
let ang = (k as f64) * PI/3.0;
|
||||
Sphere::new(
|
||||
format!("chain{k}"),
|
||||
format!("Chain {k}"),
|
||||
color,
|
||||
engine::sphere(1.0 * ang.sin(), 0.0, 1.0 * ang.cos(), 0.5)
|
||||
)
|
||||
}
|
||||
)
|
||||
);
|
||||
for sphere in spheres {
|
||||
let _ = assembly.try_insert_element(sphere);
|
||||
}
|
||||
|
||||
// put the outer sphere in ghost mode and fix its curvature
|
||||
let outer = assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id["outer"].clone()
|
||||
);
|
||||
outer.ghost().set(true);
|
||||
let outer_curvature_regulator = outer.regulators().with_untracked(
|
||||
|regs| regs.first().unwrap().clone()
|
||||
);
|
||||
outer_curvature_regulator.set_point().set(
|
||||
SpecifiedValue::try_from((1.0 / 3.0).to_string()).unwrap()
|
||||
);
|
||||
|
||||
// impose the desired tangencies
|
||||
let [outer, sun, moon] = ["outer", "sun", "moon"].map(
|
||||
|id| assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[id].clone()
|
||||
)
|
||||
);
|
||||
let chain = index_range.map(
|
||||
|k| assembly.elements_by_id.with_untracked(
|
||||
|elts_by_id| elts_by_id[&format!("chain{k}")].clone()
|
||||
)
|
||||
);
|
||||
for (chain_sphere, chain_sphere_next) in chain.clone().zip(chain.cycle().skip(1)) {
|
||||
for (other_sphere, inversive_distance) in [
|
||||
(outer.clone(), "1"),
|
||||
(sun.clone(), "-1"),
|
||||
(moon.clone(), "-1"),
|
||||
(chain_sphere_next.clone(), "-1")
|
||||
] {
|
||||
let tangency = InversiveDistanceRegulator::new([chain_sphere.clone(), other_sphere]);
|
||||
tangency.set_point.set(SpecifiedValue::try_from(inversive_distance.to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(tangency));
|
||||
}
|
||||
}
|
||||
|
||||
let outer_sun_tangency = InversiveDistanceRegulator::new([outer.clone(), sun]);
|
||||
outer_sun_tangency.set_point.set(SpecifiedValue::try_from("1".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(outer_sun_tangency));
|
||||
|
||||
let outer_moon_tangency = InversiveDistanceRegulator::new([outer.clone(), moon]);
|
||||
outer_moon_tangency.set_point.set(SpecifiedValue::try_from("1".to_string()).unwrap());
|
||||
assembly.insert_regulator(Rc::new(outer_moon_tangency));
|
||||
}
|
||||
|
||||
#[component]
|
||||
pub fn AddRemove() -> View {
|
||||
/* DEBUG */
|
||||
|
@ -398,6 +508,7 @@ pub fn AddRemove() -> View {
|
|||
"low-curv" => load_low_curv_assemb(assembly),
|
||||
"pointed" => load_pointed_assemb(assembly),
|
||||
"radius-ratio" => load_radius_ratio_assemb(assembly),
|
||||
"irisawa-hexlet" => load_irisawa_hexlet_assemb(assembly),
|
||||
_ => ()
|
||||
};
|
||||
|
||||
|
@ -450,6 +561,7 @@ pub fn AddRemove() -> View {
|
|||
option(value="low-curv") { "Low-curvature" }
|
||||
option(value="pointed") { "Pointed" }
|
||||
option(value="radius-ratio") { "Radius ratio" }
|
||||
option(value="irisawa-hexlet") { "Irisawa hexlet" }
|
||||
option(value="empty") { "Empty" }
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue