Start interface to Macaulay2

I did this to try out Macaulay2's "triangularize" function, but that
turns out to use Maple for rings with more than three variables.
This commit is contained in:
Aaron Fenyes 2024-02-16 12:47:06 -08:00
parent 3170a933e4
commit 74529048de
3 changed files with 64 additions and 36 deletions

View file

@ -29,6 +29,18 @@ end
dimension(I::Generic.Ideal{U}, maxdepth = Inf) where {T <: RingElement, U <: MPolyRingElem{T}} =
length(gens(base_ring(I))) - codimension(I, maxdepth)
m2_ordering(R::MPolyRing) = Dict(
:lex => :Lex,
:deglex => :GLex,
:degrevlex => :GRevLex
)[ordering(R)]
string_m2(ring::MPolyRing) =
"QQ[$(join(symbols(ring), ", ")), MonomialOrder => $(m2_ordering(ring))]"
string_m2(f::MPolyRingElem) =
replace(string(f), "//" => "/")
# --- primitve elements ---
abstract type Element{T} end
@ -149,7 +161,10 @@ function Base.push!(ctx::Construction{T}, rel::Relation{T}) where T
end
end
function realize(ctx::Construction{T}) where T
# output options:
# nothing - find a Gröbner basis
# :m2 - write a system of polynomials to a Macaulay2 file
function realize(ctx::Construction{T}; output = nothing) where T
# collect coordinate names
coordnamelist = Symbol[]
eltenum = enumerate(Iterators.flatten((ctx.spheres, ctx.points)))
@ -197,7 +212,16 @@ function realize(ctx::Construction{T}) where T
push!(eqns, sum(elt.vec[2] for elt in Iterators.flatten((ctx.points, ctx.spheres))) - n_elts)
end
(Generic.Ideal(coordring, eqns), eqns)
if output == :m2
file = open("macaulay2/construction.m2", "w")
write(file, string(
"coordring = $(string_m2(coordring))\n",
"eqns = {\n $(join(string_m2.(eqns), ",\n "))\n}"
))
close(file)
else
return (Generic.Ideal(coordring, eqns), eqns)
end
end
end