Start interface to Macaulay2
I did this to try out Macaulay2's "triangularize" function, but that turns out to use Maple for rings with more than three variables.
This commit is contained in:
parent
3170a933e4
commit
74529048de
3 changed files with 64 additions and 36 deletions
|
|
@ -29,6 +29,18 @@ end
|
|||
dimension(I::Generic.Ideal{U}, maxdepth = Inf) where {T <: RingElement, U <: MPolyRingElem{T}} =
|
||||
length(gens(base_ring(I))) - codimension(I, maxdepth)
|
||||
|
||||
m2_ordering(R::MPolyRing) = Dict(
|
||||
:lex => :Lex,
|
||||
:deglex => :GLex,
|
||||
:degrevlex => :GRevLex
|
||||
)[ordering(R)]
|
||||
|
||||
string_m2(ring::MPolyRing) =
|
||||
"QQ[$(join(symbols(ring), ", ")), MonomialOrder => $(m2_ordering(ring))]"
|
||||
|
||||
string_m2(f::MPolyRingElem) =
|
||||
replace(string(f), "//" => "/")
|
||||
|
||||
# --- primitve elements ---
|
||||
|
||||
abstract type Element{T} end
|
||||
|
|
@ -149,7 +161,10 @@ function Base.push!(ctx::Construction{T}, rel::Relation{T}) where T
|
|||
end
|
||||
end
|
||||
|
||||
function realize(ctx::Construction{T}) where T
|
||||
# output options:
|
||||
# nothing - find a Gröbner basis
|
||||
# :m2 - write a system of polynomials to a Macaulay2 file
|
||||
function realize(ctx::Construction{T}; output = nothing) where T
|
||||
# collect coordinate names
|
||||
coordnamelist = Symbol[]
|
||||
eltenum = enumerate(Iterators.flatten((ctx.spheres, ctx.points)))
|
||||
|
|
@ -197,7 +212,16 @@ function realize(ctx::Construction{T}) where T
|
|||
push!(eqns, sum(elt.vec[2] for elt in Iterators.flatten((ctx.points, ctx.spheres))) - n_elts)
|
||||
end
|
||||
|
||||
(Generic.Ideal(coordring, eqns), eqns)
|
||||
if output == :m2
|
||||
file = open("macaulay2/construction.m2", "w")
|
||||
write(file, string(
|
||||
"coordring = $(string_m2(coordring))\n",
|
||||
"eqns = {\n $(join(string_m2.(eqns), ",\n "))\n}"
|
||||
))
|
||||
close(file)
|
||||
else
|
||||
return (Generic.Ideal(coordring, eqns), eqns)
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
Loading…
Add table
Add a link
Reference in a new issue