Try numerical low-rank factorization
The best technique I've found so far is the homemade gradient descent routine in `descent-test.jl`.
This commit is contained in:
parent
ef33b8ee10
commit
58a5c38e62
3 changed files with 223 additions and 0 deletions
49
engine-proto/gram-test/low-rank-test.jl
Normal file
49
engine-proto/gram-test/low-rank-test.jl
Normal file
|
@ -0,0 +1,49 @@
|
|||
using LowRankModels
|
||||
using LinearAlgebra
|
||||
using SparseArrays
|
||||
|
||||
# testing Gram matrix recovery using the LowRankModels package
|
||||
|
||||
# initialize the partial gram matrix for an arrangement of seven spheres in
|
||||
# which spheres 1 through 5 are mutually tangent, and spheres 3 through 7 are
|
||||
# also mutually tangent
|
||||
I = Int64[]
|
||||
J = Int64[]
|
||||
values = Float64[]
|
||||
for i in 1:7
|
||||
for j in 1:7
|
||||
if (i <= 5 && j <= 5) || (i >= 3 && j >= 3)
|
||||
push!(I, i)
|
||||
push!(J, j)
|
||||
push!(values, i == j ? 1 : -1)
|
||||
end
|
||||
end
|
||||
end
|
||||
gram = sparse(I, J, values)
|
||||
|
||||
# in this initial guess, the mutual tangency condition is satisfied for spheres
|
||||
# 1 through 5
|
||||
X₀ = sqrt(0.5) * [
|
||||
1 0 1 1 1;
|
||||
1 0 1 -1 -1;
|
||||
1 0 -1 1 -1;
|
||||
1 0 -1 -1 1;
|
||||
2 -sqrt(6) 0 0 0;
|
||||
0.2 0.3 -0.1 -0.2 0.1;
|
||||
0.1 -0.2 0.3 0.4 -0.1
|
||||
]'
|
||||
Y₀ = diagm([-1, 1, 1, 1, 1]) * X₀
|
||||
|
||||
# search parameters
|
||||
search_params = ProxGradParams(
|
||||
1.0;
|
||||
max_iter = 100,
|
||||
inner_iter = 1,
|
||||
abs_tol = 1e-16,
|
||||
rel_tol = 1e-9,
|
||||
min_stepsize = 0.01
|
||||
)
|
||||
|
||||
# complete gram matrix
|
||||
model = GLRM(gram, QuadLoss(), ZeroReg(), ZeroReg(), 5, X = X₀, Y = Y₀)
|
||||
X, Y, history = fit!(model, search_params)
|
Loading…
Add table
Add a link
Reference in a new issue